SystemTest™ 2
User's Guide

1LAB
IMULINK"

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
SystemTest™ User’s Guide
© COPYRIGHT 2006-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 2006 Online only New for Version 1.0 (Release 2006a+)
September 2006 First printing Revised for Version 1.0.1 (Release 2006b)
March 2007 Online only Revised for Version 1.1 (Release 2007a)
September 2007 Second printing Revised for Version 2.0 (Release 2007b)
March 2008 Online only Revised for Version 2.1 (Release 2008a)
October 2008 Online only Revised for Version 2.2 (Release 2008b)
March 2009 Online only Revised for Version 2.3 (Release 2009a)
September 2009 Online only Revised for Version 2.4 (Release 2009b)
March 2010 Online only Revised for Version 2.5 (Release 2010a)
September 2010 Online only Revised for Version 2.6 (Release 2010b)

April 2011 Online only Revised for Version 2.6.1 (Release 2011a)

Getting Started

1

Product Overviewcciiiiiiiiuennnnn.. 1-2
Quick Tour of the SystemTest Software 1-3
Getting Familiar with the Desktop 1-3
General Desktop Features 1-5
Setting SystemTest Preferences 1-7
Viewing Test Results 1-9
Running Tests from the MATLAB Command Line 1-11
Example: BuildingaTest 1-12
OVeIVIBW & ittt ettt et e e e 1-12
Planning Your Test 1-12
Building Your Test 1-13
Running Your Test 1-38
Analyzing Your Test Results 1-41

Working with Test Vectors

2

Creating MATLAB Expression Test Vectors 2-2
Creating Grouped Test Vectors 2-5
About Test Vectors and the MATLAB Workspace 2-13

Creating MAT-File Test Vectors 2-14

Creating Randomized Test Vectors with Probability

Distributions i 2-20
Using Probability Distributions in Test Vectors 2-20
Creating a Test Vector with Probability Distributions 2-20
Viewing Data While Configuring the Test Vector 2-25
The Probability Distributions 2-28
Example: Creating Test Vectors with Probability
Distributions i e 2-36
Creating Spreadsheet Data Test Vectors 2-46
Introduction i i 2-46
Creating a Spreadsheet Data Test Vector 2-46
Configuring the Spreadsheet Data Test Vector 2-50
Replacing Strings 2-53

Creating Simulink Design Verifier Data File Test

VeCtors ... e e 2-55
Prerequisites 2-55
Automatically Creating a SystemTest Test Harness from
Simulink® Design Verifier 2-55
Creating a Simulink Design Verifier Data File Test
VeCtor .. e e 2-57
Important Usage Notesccviiiinnnn. 2-67
Creating Signal Builder Block Test Vectors 2-69
Creating a Test Case Data Test Vector 2-75

Using a MATLAB Element to Access Test Case Data
Test Vector Information 2-78

Editing a Test Vector from within an Element 2-79

Working with the Basic Elements

3

Working with the SectionsofaTest 3-2
L0 =) T 1= 3-2

vi Contents

4 |

PreTest ... 3-2
Main Test i e 3-3
PostTest ... 3-3
BasicElements, 3-5
Introduction 3-5
MATLABElementc0uuutiiiiiiiiiieennn. 3-6
Limit Check Element — General Check 3-7
Limit Check Element — Tolerance Check 3-11
IFElement 3-14
General Plot Element 3-15
Vector Plot Element o.... 3-20
Scalar Plot Element 0.0, 3-23
Stop Element i, 3-26
Subsection Element 3-27
Deprecated Elements 3-29
Converting Elements 0o, 3-29
Scalar Plot Conversion Details 3-31
Vector Plot Conversion Details 3-32
Using the Simulink Element
Before YouBegin 4-3
Mapping Test Vectors and Test Variables to a Simulink
Model 4-5
Introduction 4-5
Adding a Simulink Element 4-6
Specifying the Simulink Model 4-7
Overriding Simulink Model Inputs 4-7
Mapping Simulink Model Outputs to Test Variables 4-13
Using the Model Output Mappings Assistant 4-20
Editing a Test Vector or Test Variable from within the
Element 4-21
Overriding Inport Block Signals 4-22
Introduction 4-22

vii

Overriding Inport Block Signals in a Simulink Element .. 4-23

Using the Inport Block Mappings Assistant 4-27
Example: Overriding Simulink Inport Blocks Using a
Spreadsheet Data Test Vector 4-28
Mapping Logged Signals from a Model to Inport Blocks .. 4-36
Editing a Test Vector or Test Variable from within the
Element i e e 4-37
Using Simulink Model Coverage 4-38
Using Simulink® Design Verifier Data Files in a Test .. 4-46
Using Signal Builder Block Test Cases in a Test 4-47

Using Test Cases and Signals from the Test Case Editor
in a Simulink Element 4-48

Authoring Signals in the Test Case Editor

5

Introduction to the Test Case Editor 5-2
Definitionsiiiiii e e 5-2
Workflow of Authoring and Using Signals 5-4
Creating a Test Case Data Test Vector 5-6
Working in the Test Case Editor 5-9
Navigating in the Edit View and Test Case View 5-9
Creating Test Casesiiiiiinnnneennnnn. 5-13
Adding SignalstoTest Casescovviiieeeeoo... 5-18
Working with Buses 5-23
The Signal Typesttt 5-30
Linking to Requirements in Telelogic® DOORS 5-38
Introductionand Setup 5-38
Adding Requirementsc0iiiiiineee... 5-38

viii Contents

Requirements Tab 5-41
Test Case Report 5-44
Creating Requirements Programmatically 5-46

Using Test Cases and Signals in SystemTest Test

Elements, 5-50
Introduction 5-50
Simulink Element 5-50
MATLABElement i iiiiinnnnn.. 5-51
General Plot Element 5-51

Working with Test Cases and Signals

Programmatically 5-57
Test Case Editor APT i, 5-57
Loading and Saving Test Cases 5-58
Editing Test Cases ...ttt 5-59
Creating Signalsiiiiiinnnnnennnnn. 5-60
Importing Data from an External Source into a Test

CaSE vt e e e 5-61

Generating a SystemTest Test Harness from a
Simulink Model

6

Introduction 6-2
Prerequisites 6-3
Generating the Test Harness from Simulink 6-4

Generating the Test Harness at the MATLAB Command
Line e e 6-13

ix

X

Contents

Using the Instrument Control Toolbox Elements

7

Introduction i i, 7-2
Instrument Control Toolbox Elements 7-2
Accessing Resources 7-2

Example: Measuring a Generator’s Frequency 7-4
Introduction 7-4
Setting Up the Signal Generator 7-5
Setting Up the Oscilloscopecoiiiin... 7-9
Taking the Measurement 7-11
Saving Test Results 7-12
Running the Test and Viewing Test Results 7-13

Using the Data Acquisition Toolbox Elements

8

Introduction i i, 8-2
OVeIVIBW o ittt ettt ettt e e 8-2
Data Acquisition Toolbox Test Elements 8-2

Example: Testing a Voltage Regulator 8-3
Introduction 8-3
Sending Analog Stimulus Data to the DUT 8-4
Enabling the DUT with Digital Data 8-7
Receiving Analog Response Data from the DUT 8-9
Disabling the DUT with Digital Data 8-10
Performing Data Analysis 8-12
Defining Post Test Elements 8-13
Saving and Viewing Test Results 8-14

Using the Image Acquisition Toolbox Element

9

Introduction i i, 9-2
Example: Acquiring Video Dataina Test 9-3
Adding the Video Input Elementtoa Test 9-3
Saving and Viewing Test Results 9-8
RunningtheTest 9-9

Distributing Tests Using Parallel Computing
Toolbox Integration

10|

SystemTest Software and Parallel Computing Toolbox

Integration 10-2
Enabling Distributed Testing 10-3
Selecting a User Configuration 10-5
Setting Up File Dependencies 10-7
Setting Up Path Dependencies 10-9
Distributing Iterations Across Tasks 10-12
Running a Distributed Test 10-14
Example: Distributinga Test 10-17

xi

xii

Using the Test Results Viewer

11

Viewing Test Results 11-2
Before YouBegin 11-3
A Quick Tour of the Test Results Viewer 11-6
Viewing Your Test Results 11-8
Reserved Keywordsccoo .. 11-8
Browsing Results i, 11-8
Generating Plots 11-9
Exploring Plots i 11-16
Refining Your Test Results 11-29
Creating and Applying Constraints 11-29
Plotting Single Iterations 11-36
Viewing Simulink Time SeriesData 11-38
OVeIVIBW & ittt ettt et e e e 11-38
Creating a Time Series Plot 11-38
Saving and Reloading Test Results 11-43
Saving Test Results 11-43
Loading Test Results 11-44

Accessing Test Results from the MATLAB
Command Line

12

Viewing Test Results at the Command Line 12-2
Introduction 12-2
Accessing the Results Summary 12-2
Accessing the dataset Array 12-5

Contents

Working with Test Results 12-8

Introduction i 12-8
Managing Test Results Data in its Native Format 12-8
Managing Test Results as a Dataset Array 12-9
Plotting Results Data 12-10
Accessing Test Results While a Test Is Running 12-15

Function Reference

13

SystemTest Hot Keys

A

The dataset Array

Bl

Dataset Arraysciiiiiiiiit i, B-2
OVeIVIEW ottt ettt e e e e e B-2
Test Results Data i, B-3
LookingatData B-3

Dataset Array Operations B-5

Index

xiii

xiv Contents

Getting Started

This section explains what the SystemTest™ software is and shows you how
to use it. It contains the following topics:

® “Product Overview” on page 1-2

® “Quick Tour of the SystemTest Software” on page 1-3

¢ “Running Tests from the MATLAB Command Line” on page 1-11
e “Example: Building a Test” on page 1-12

1 Getting Started

Product Overview

The SystemTest software provides MATLAB® and Simulink® users with a
framework that integrates software, hardware, simulation, and other types
of testing in one environment. You use predefined elements to build test
sections that simplify the development and maintenance of standard test
routines. You can save and share tests throughout a development project to
ensure standard and repeatable test verification. The SystemTest software
offers integrated data management and analysis capabilities for creating
and executing tests, and saving test results to facilitate continuous testing
across the development process.

The SystemTest software automates testing in MATLAB and Simulink
products. With the SystemTest software you get:

® Graphical test editing — Quickly edit your test within a graphical test
development environment.

® Repeatable test execution — All tests developed with the SystemTest
software share the same execution flow, which provides a consistent test
framework among tests.

¢ Parameterized testing — Create test vectors over which your test iterates.

e Reusability — After you design a test, you can save it for later use by you
or others.

¢ Maintainability — Because you design and execute tests from the
SystemTest desktop, you do not need to understand unfamiliar code or
concepts.

¢ Integration — The SystemTest software integrates with MATLAB,
Simulink, and other products based on MATLAB and Simulink.

1-2

Quick Tour of the SystemTest™ Software

Quick Tour of the SystemTest Software

In this section...

“Getting Familiar with the Desktop” on page 1-3
“General Desktop Features” on page 1-5
“Setting SystemTest Preferences” on page 1-7

“Viewing Test Results” on page 1-9

Getting Familiar with the Desktop

The SystemTest desktop is an integrated development environment that
lets you perform all of your testing activities from one centralized location.
This section provides an overview of the SystemTest environment. For more
information about how to use the SystemTest software to build tests and run
them, see “Example: Building a Test” on page 1-12.

To get familiar with the SystemTest environment, open the SystemTest
desktop from MATLAB by selecting Start > MATLAB > SystemTest >
SystemTest Desktop or typing systemtest at the MATLAB command line.

Getting Started

1-4

) SystemTest - C:\MATLAB\Simple_Demo.test*
Fle Edit Insert Run Tools Deskitop Window Help

=

Ndd|2 ¢kl @ | @

+ %X
=) Simple_Demo
| - PreTest
[= Main Test (60 Iterations)
i ¥ Create Scalar Data
Scalar Limit Check
Plot Scalar Data
- Save Results
Post Test
est Vectors
: ignal
5 FH Test variables

- tiimit

*~ LonLimit

[new

Test Browser 2 x| Test Vactors Test Variables Getting Started | Desktop Help # X | Run Status

|»

Test Properties — General

Use this tab to set general properties on your test. A test s
& Alllimit check elements in an iteration pass comprised of elements, test variables, test vectors, and test
results

General | output Files | Distributed |

[“This Test Passes If-

" Any limit check element in an iteration passes

D + Elements represent actions for the test o perform, such as

evaluating a MATLAB" script or simulating a Simulink” mode

@ Alliterations pass. + Test variables are used to temporarily store data for use by
test slements during execution. You can initalize variables in
the Pre Test or Main Test with any MATLAB expression

+ Test vectors specify the values that vary during each test

Description iteration. The SystemTest™ software kets you use multiple test
vectors whose values are arguments (for algorithms) or
parameters and input signals (for medels). You can use
WATLAB expressions to speciy the values in multiple test
vectors,

+ Test results are configured in Save Results in order to save
test variable values at the end of each ieration

™ Any iteration passes

For information on how to get started using the SystemTest
software to create and run tests, see the Getling Started page.
Click on the Getting Started tab, or select Help > SystemTest
Getting Started to open the page

Note: Use the Distributed tab to set up distributed testing
¥ Farts of the Test

You use the Properties pane to set the condilions that
determine whether a test passes and other test options. The
Tollowing sections describe the various options on the
Properties pane.

¥ This Test Passes If

P Description

ol

The desktop has a number of different panes that help you to build and run
your test.

Test Browser — Shows the overall structure of a test. A test is made up of
Pre Test, Main Test, Save Results, and Post Test. Use the Test Browser to
add elements to your test. These elements determine what actions your
test performs.

Test Vectors — Lets you define the parameters or test cases of your test.
The test vectors you define determine the number of iterations performed
by your test. Test vectors are automatically indexed during test execution.

Test Variables — Lets you define variables used in the scope of your test.
Variables can serve both input and output functions in your test. You can
define variables that are declared in the Pre Test section of your test or in
the Main Test section of your test.

Quick Tour of the SystemTest™ Software

®* Properties — Shows the properties of the test or the element you are
editing. The contents of this pane change when you select a section or
element in your test.

¢ Elements — If open, this undocked Elements pane allows you to add
elements to your test. If not open, you can add elements using the New
button in the Test Browser.

® Resources — Lists the instrument or other external device resources
associated with the current test. This is only used if you have a license for
the Instrument Control Toolbox™ software.

* (Getting Started — Shows information to help you start using the
SystemTest software. If the Getting Started page is closed, select Help >
SystemTest Getting Started to open it.

¢ Desktop Help — Shows help about the element or aspect of the test that
1s currently selected. For the full product Help, select Help > SystemTest
User’s Guide.

® Run Status — Shows a summary of the test’s execution status.

General Desktop Features
The SystemTest desktop has a variety of features to make navigation easier.

Context Menus

Many areas of the user interface have context menus. For example, if you
right-click in the Test Vectors, Test Variables, Resources, Run Status,
Getting Started, or Desktop Help panes, you can access these context
menus.

If you have the Elements pane open, you can add elements to your test using
the context menus. If you right-click any element there, you can insert it
directly into Pre Test, Main Test, or Post Test using the Elements pane
context menus. If that section of the test already contains elements, the
inserted element will be placed below the currently selected element in that
section. You can change the order of elements in the test by using the arrow
buttons in the Test Browser, or by dragging and dropping.

1-5

1 Getting Started

1-6

Hot Keys

The SystemTest software offers various keyboard shortcuts, or hot keys, to
access certain commands via the keyboard. For example, pressing F5 is an
alternative way to run a test, and pressing Ctrl+N creates a new untitled test.

See the full list of SystemTest hot keys in Appendix A, “SystemTest Hot Keys”.

Undo/Redo Support

Undo and redo support is available through the Edit menu or on the
SystemTest toolbar. This feature allows you to undo actions you have done
throughout the desktop. The undo queue is global to the entire desktop. For
example, if you add a test vector and then perform an action in the Properties
pane, those two actions will be the last two items in the queue. The undo
order applies across all the panes in the desktop.

To use this feature, select the Edit > Undo action command, where action
1s the last action you performed. Use the Undo command repeatedly to
undo multiple actions. The Edit > Redo action command will redo the last
undo you performed.

Most actions in the desktop are undoable. Some actions pertaining to the
elements that are part of the hardware toolboxes, Data Acquisition Toolbox™,
Instrument Control Toolbox, and Image Acquisition Toolbox™, cannot be
undone since they involve connections to hardware.

The following actions will clear the list of actions in the undo queue:

Closing a test
® Opening a test

Creating a new test

Refreshing a Simulink model in the Simulink element

Quick Tour of the SystemTest™ Software

Setting SystemTest Preferences

You can set SystemTest preferences by selecting File > Preferences on
the SystemTest desktop. This opens the MATLAB Preferences dialog box.
Click SystemTest in the left tree if SystemTest Preferences are not showing
in the right pane.

i

[E-General *| SystemTest Preferences
- MAT-Files
Confirmation Dialogs ~Most Recently Used Test List

#~Source Control Number of entries: [4=
--Jawa Heap Memory
[#-Keyboard ~Test Run Options
[H-Fonts
- Colors ™ Minimize SystemTest when starting a test
~Code Analyzer [Save test before running
----- Toolbars

--Command Window
-Command History
[#-Editor [Debugger
-Help

----- Web

-{urrent Folder

----- Variable Editor

-+ LIDE

----- Time Series Tools
[#-Figure Copy Template
- Zompiler

--Repart Generator

emles
--Bioinformatics Tools

- Database Toolbox

----- Image Processing

----- Instrument Control
--System Objects
--Simulink

~-Simscape

[-Simulink 30 Animation
- Simulink Control Design
--Signal Processing Blockse__|
----- Yideo and Image Proces: ™

0K I Cancel Apply Help

1-7

1 Getting Started

1-8

Most Recently Used Test List

This option determines how many tests will appear on the SystemTest File
menu’s most recent files list. The default is 4 tests. If you change it to 0, no
recent tests will appear on the list. The maximum number is 9.

Test Run Options

Select Minimize SystemTest when starting a test if you want the
SystemTest desktop to minimize when a test starts running. This check box
1s cleared by default.

Select Save test before running if you want the SystemTest software to
save your test before it runs. If this option is selected and you run a test
that is not yet saved, you will be prompted to name and save the test. This
check box 1s selected by default.

Note You can save a test any time, before or after running it, by selecting
File > Save.

Confirmation Dialog Boxes

You can also turn off confirmation dialog boxes used in the SystemTest
software in a different area of the Preferences dialog box by selecting General
> Confirmation Dialogs. Four SystemTest confirmation dialog boxes are
listed there, as shown in the figure that follows.

® Warn about using a Simulink model with an infinite simulation
stop time — Occurs if you attempt to run a test containing a Simulink
element that uses a model with an infinite simulation stop time.

® Warn about using a Simulink model with unnamed logged signals
— Occurs if you have a model that has logging enabled but has logged
signals with no name, and you use that model in a Simulink element in the
SystemTest software.

® Warn each time a new signal is added in the test case editor —
Occurs if you add a signal in the Test Case Editor.

® Warn each time a signal is deleted in the test case editor — Occurs if
you delete a signal in the Test Case Editor.

Quick Tour of the SystemTest™ Software

) JRT=TE

[=-General =

AT-Files

=-Java Heap Memory
[+-Keyboard

[+]-Fonts

[+-Caolors

- Code Analyzer

- Command Window
- Command Histary

[#]-Editor /[Debuager

--Help

- Current Folder
----- Variable Editor

----- Workspace

- GUIDE

----- Time Series Tools

[#-Figure Copy Template

- Compiler

--Repaort Generator
--SystemTest
--Bioinformatics Tools
--Database Toolbox
----- Image Acguisition
----- Image Processing
----- Instrument Control
- System Objects

- Simulink

- Simscape

[#-Simulink 30 Animation

- Simulink Control Design
- 5ignal Processing Blockse ™

General Confirmation Dialogs Preferences

The following dialog boxes require user confirmation. Select a check box if you want that dialog box to appear.

Sta IDiang Box Description

Tool £

Warn before deleting Command History items
Warn before clearing the Command Window

Confirm when deleting variables

Select all |

te

I~

I~

=2 Confirm when overwriting variables in MAT files Current Folder

=2 Confirm when overwriting workspace variables via drag-and-drop Current Folder

I~ Confirm when upgrading an existing deployment project to the lates... Deployment Tool
¥ Prompt when editing files that do not exist Editor

¥ Prompt to exit debug mode when saving file Editor

¥ Prompt to save on activate GUIDE

¥ Prompt to save on export GUIDE

¥ Confirm changing default callback implementation GUIDE

I Confirm before exiting MATLAB General

¥ Prompt when editing drivers that do not exist Instrument Control
¥ Prompt when editing driver tests that do not exist Instrument Control
¥ Warn about using a Simulink model with an infinite simulation stop time SystemTest

¥ Warn about using a Simulink model with unnamed logged signals SystemTest

I Warn each time a new signal is added in the test case editor SystemTest

=2 Warn each time a signal is deleted in the test case editor SystemTest

I~

Command History
Command Window

Workspace

Clear all |

oK I Cancel | Apply Help

Viewing Test Results

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

1-9

1 Getting Started

For more information, see Chapter 12, “Accessing Test Results from the
MATLAB Command Line”.

1-10

Running Tests from the MATLAB® Command Line

Running Tests from the MATLAB Command Line

You can run one or more SystemTest tests from the MATLAB command line,
using the strun function. This is useful for running multiple test files as a
batch or calling a test file as part of a MATLAB file.

Note If you use this feature, it is a good idea to first run the test from the
SystemTest desktop to verify that elements are not in an error state, and that
the test will run successfully, before running it via the MATLAB command
line using the strun function.

The function takes the name of your test file as a string. The test file must be
on the MATLAB path, or you can specify the full path in the string.

For example, to run a test called mytest that is on the MATLAB path, use
this syntax:

strun('mytest')

To run a test called mytest that is not on the MATLAB path, but is in a local
directory called c:\work, use this syntax:

strun('c:\work\mytest.test')

To run multiple tests, use a cell array of strings, as follows:

strun({'mytest' 'mytest2'})

Note MATLAB will remain busy while tests are executing via the strun
command. Control is returned to the MATLAB command line once all tests
execute.

If the SystemTest desktop is open when strun is called, strun leaves it open.
Otherwise, strun closes the desktop after the test runs.

For more information about using strun, see the function page.

1-11

1 Getting Started

1-12

Example: Building a Test

In this section...

“Overview” on page 1-12

“Planning Your Test” on page 1-12
“Building Your Test” on page 1-13
“Running Your Test” on page 1-38

“Analyzing Your Test Results” on page 1-41

Overview

This simple example illustrates the four primary stages of testing: planning,
building, running the test, and viewing test results.

The example uses a simple MATLAB expression to emulate a scalar
measurement during each iteration of the test. The example uses an arbitrary
formula dependent on the test vector named signal to generate the Y data.
The example tests each measurement to determine if it falls within certain
specified limits. If a measurement exceeds these limits, that particular
iteration of the test fails. By default, the test fails if any iteration fails, but
you can configure other pass/fail criteria.

The following sections provide more information about each stage, building
the example test along the way. If you prefer, instead of working through the
following sections to build the example, you can load it into the SystemTest
software by running the Getting Started with SystemTest demo from the
Demos page in the MATLAB Help browser (under MATLAB > SystemTest
> MATLAB) or by entering systemtest Simple Demo at the MATLAB
command prompt.

Planning Your Test

In this first stage, you must identify what it is you want to test. The
SystemTest software lets you specify input data, such as measurements from
a model or device, and compare this input data to some predefined limits.
Based on this comparison, the SystemTest software can declare whether

a test passes or fails.

Example: Building a Test

Keep the following in mind as you plan tests:

¢ Identify your test data and test vectors.

® Specify test limits and determine if these limits can be expressed as scalar
or matrix values. (The Limit Check element supports both scalar and
matrix data.)

® Determine what operations your test must perform. Must certain
operations happen before others?

® Determine pass/fail criteria for your test.
® Decide which test variables you want to save as test results.

After this planning, you can begin to construct your test, which is described in
“Building Your Test” on page 1-13.

Building Your Test

The SystemTest interface provides a graphical integrated environment that
you can use to create and edit tests. Tests consist of elements, test vectors,
and test variables. You can use each of these entities to create a variety

of test scenarios ranging from a simple test that runs a series of elements
once to a full parameter sweep that iterates over the values of test vectors
that you define.

The following sections show how to construct a test:

® “Starting the SystemTest Software” on page 1-14
e “Structuring Your Test” on page 1-14

e “How Test Vectors and Test Variables Relate to the MATLAB Workspace”
on page 1-16

® “Creating a Test Vector” on page 1-16

® “Defining Test Variables” on page 1-19

¢ “Adding Elements” on page 1-21

¢ “Defining Pass/Fail Criteria” on page 1-31
e “Saving Test Results” on page 1-32

1-13

1 Getting Started

1-14

® “Generating a Test Report” on page 1-35
* “Saving Your Test” on page 1-37

Starting the SystemTest Software

Start by opening the SystemTest desktop using the MATLAB Start button.
To open the SystemTest software, select Start > MATLAB > SystemTest >
SystemTest Desktop.

Alternatively, you can execute the systemtest command from the MATLAB
command line.

The SystemTest software displays the desktop on your screen. See “Quick
Tour of the SystemTest Software” on page 1-3 for an overview.

Structuring Your Test
The SystemTest software divides tests into three sections.

® Pre Test — This section is used to execute test elements in order to
perform any test set-up operations, such as initializing variables, loading
data from a file, and initializing system resources. Using Pre Test
variables, you can assign an initial value to a test variable that persists
between Main Test section iterations (unless another element in Main Test
modifies the value). Pre Test is not mandatory, but it can be used if your
test requires set-up operations to be performed.

® Main Test — Main Test defines the test elements that need to be
performed across the parameter space defined by your test vectors. In this
section Main Test variables are initialized before each Main Test iteration,
which lets you assign an initial value to a test variable each time the Main
Test runs. This is useful if your test variable has a derived value such as
being indexed by a test vector or is the result of a MATLAB expression.

The number of iterations performed in the Main Test is indicated in the
Test Browser in parentheses after Main Test. Iterations specifies the
number of times the Main Test section will be run. This is determined from
the test vectors you define. The SystemTest desktop also offers a Save
Results area for you to specify which test variables you want to save as
test results at the end of each Main Test iteration.

Example: Building a Test

® Post Test — In this section you can perform any cleanup work necessary
at the completion of the Main Test section, such as clearing workspace
variables, closing a file, or freeing system resources.

For details about the sections of the test, see “Working with the Sections
of a Test” on page 3-2.

The following figure illustrates the structure of a test.

Test Structure

Pre Test

pre fest element ”l

F-

3

main test variables

Main Test EEl

main test element I

[TERATIONS

test vectors

save results

post test element

Post Test [

1-15

1 Getting Started

1-16

How Test Vectors and Test Variables Relate to the MATLAB
Workspace

The SystemTest software has its own internal workspace that it uses to
manage test variables and test vectors independently. However it does

leverage the MATLAB workspace during test execution, and when using
a MATLAB element.

During test execution, SystemTest test variables and test vectors are
evaluated in the MATLAB base workspace. Then at the end of test execution,
they are cleared out and the MATLAB base workspace is restored to what it
was before the test execution.

When using a MATLAB element in the SystemTest software, you can
reference a variable in the base workspace without having to create a test
vector or test variable in the SystemTest software. However the SystemTest
software will not be aware of this data, so you could not make use of it in any
other element type or in saved results. You can only access it from a MATLAB
element. If you need to use it in other elements, you can create test variables
or test vectors in the SystemTest software.

Creating a Test Vector

Test vectors are composed of values derived from a MATLAB expression. You
can use any MATLAB expression that evaluates to a 1-by-n matrix or cell
array to define your test vector. Using test vectors, you can iterate through

a range of values to see how a system performs. Test vectors constitute
parameterized testing in the SystemTest software. They are the test cases
for your test.

For tests with multiple test vectors, the product of the lengths of the test
vectors defines the number of iterations the test performs. For example, if you
define the test vector [10 20 30], the test runs three times, using a value of
10 for the first run, 20 for the second, and 30 for the final run. If you add a
second test vector with three other values, the total number of test runs would
be nine. The SystemTest software iterates through each vector in combination
with the other vector as though the test were a group of nested FOR loops—the
outermost loop being the first test vector in your table and the innermost loop
being the last test vector. The Main Test section in the Test Browser shows
the total number of test iterations defined by your test vectors.

Example: Building a Test

) Insert Test Vector

Select Test Veckor type:

Probability Distribution
Signal Builder Block -

T £ MATLAE Expressix
Simulink: Design Verifier Data File e I LS

Spreadsheet Data

For the example, use the vector [pi/15:pi/15:4*pi] which defines 60 values

for our test vector ranging from pi/15 to 4*pi in pi/15 increments. To specify
this test vector:

1 Click the New Vector button in the Test Vectors pane.

The Insert Test Vector dialog box opens.

b |x

General I Grauping |

Mame: astVectorl

Expression: |[1 11:10]

Tesk Vector successfully evaluated ko a 1x10 double

[~ Evaluate Test Vector each time the test is run

oK | Cancel | ;

2 Keep the default test vector type of MATLAB Expression. Assign a name

to the test vector by clicking the Name field. For this example, name the
test vector signal.

3 Assign a value to the test vector by clicking the Expression field. Enter
the test vector specified above for the pi values. Click OK.

1-17

1 Getting Started

Properties | Test Vectors Ll Test Variables

New... | » | Evaluate

MName Length Group Mame Type

signal

F %
—_—

|»

General I Grouping |

Mame: Isignal

Type: IPrl.-'J.TL;'J.B Expression

Expression: I[pi,l'lS:pi,l'lS:4*pi]

Test Vector successfully evaluated to a 1x60 double

[~ Evaluate Tesk Vectar each time the kest is run

4 | o

After you create the test vector, in the Test Browser pane, the Main Test
section label updates to include the number of iterations defined by the test
vector. It should say Main Test (60 Iterations).

1-18

Example: Building a Test

Note Grouping test vectors determines how they will be iterated through
when the test runs. For information on grouping vectors, see “Creating
Grouped Test Vectors” on page 2-5.

Note You can also use probability distributions when you create a test vector.
For information, see “Creating Randomized Test Vectors with Probability
Distributions” on page 2-20.

Defining Test Variables

The SystemTest software uses test variables to define temporary storage
variables that a test acts on or generates. You assign test variables in the Pre
Test or Main Test sections of your test.

You can define Pre Test variables or Main Test variables. Using Pre Test
variables, you can assign an initial value to a test variable that persists
between Main Test section iterations (unless another element in Main Test
modifies the value). Pre Test is not mandatory, but it can be used if your test
requires set-up operations to be performed.

Main Test defines the test elements that need to be performed across the
parameter space defined by your test vectors. Main Test variables are
initialized before each Main Test iteration, which allows you to assign an
initial value to a test variable each time the Main Test runs. This is useful if
your test variable has a derived value such as being indexed by a test vector
or is the result of a MATLAB expression. You add elements in this section.

The example test requires three test variables:
® Y — Contains a value that will be calculated from the signal test vector

at each 1teration.

® HiLimit — Contains the upper limit for Y that you do not want the signal
to exceed.

® LowLimit — Contains the lower limit for Y that you do not want the signal
to go below.

1-19

Getting Started

1-20

To create these test variables:

1 Click the Test Variables tab in the middle pane of the SystemTest desktop.

2 Click the New button to create a Pre Test or Main Test variable. The
Insert Test Variable dialog box opens. Leave the default value of Main
Test in the Assigned in field, to create a new Main Test variable.

Insert Test Variable x|

Marme:
I'u'arl

Initial walue {optional)

Assigned in

I [Main Teskt j

(o] 4 | Cancel |

3 Assign a name to the test variable by clicking the Name field and entering
the test variable name. For this example, enter Y.

4 Set the test variable’s initial value by clicking the Initial Value field and
entering a value. For the example test variable Y, enter 0. Click OK.

Note If you do not provide an initial value, it will default to empty, that
is, Var1 = []; in MATLAB code.

Example: Building a Test

Note Test variables are re-initialized at the start of each test iteration.
The Initial value field is blank by default when you create a test variable.
If you leave it blank, it will initialize to []. If you enter an initial value
(which can be any valid MATLAB expression), that value gets assigned in
every iteration.

Properties [Test Yectors | Test Yariables A ox
] | & 8] X

Mame Initial Yalus Assigned In

i o [Main Test

5 Repeat steps 2 to 4 to create the remaining two test variables, using the
settings listed in the following table:

Variable Name Initial Value Assign in
HilLimit 1 Main Test
LowLimit -1 Main Test

Adding Elements

Elements are the actions that a test performs. The SystemTest software
includes the following set of elements, listed in alphabetical order.

® General Plot — Used to plot any type of data over multiple iterations.
¢ [F — Implements a logic control operator.

e Limit Check — Specifies the comparison to be performed of the value(s)
under test and their expected value(s), or limit(s).

¢ MATLAB — Executes any MATLAB statements.

1-21

1 Getting Started

1-22

¢ Simulink — Runs a Simulink model. Note that you need to have a license
for Simulink to use this element.

® Stop — Implements a logic control operator.

® Subsection — Creates a new section in a test that you can use to group
elements within.

Note Some MathWorks® products, such as the Image Acquisition Toolbox™
software, the Data Acquisition Toolbox™ software, and the Instrument
Control Toolbox™ software, provide their own elements that integrate those
products’ capabilities within the SystemTest software. If you have licenses for
those products, those elements will also appear in the elements list.

For more information about using the basic elements, see Chapter 3, “Working
with the Basic Elements”.

You add elements to a section in your test; however, not all elements can be
added to all sections. For example, you can use a MATLAB element anywhere
within a test, but you can only use the Limit Check element in the Main
Test section.

To illustrate using elements, let’s continue with this example. This test uses
three elements in the Main Test section.

Element Description

MATLAB Use a MATLAB expression to assign data to Y that is
dependent on the test vector signal.

Limit Check Compare the value generated in the MATLAB element to
the specified limit and see if the Y test variable exceeds
the upper or lower limit you defined in your HiLimit and
LowLimit test variables.

General Plot Plot the current test variable values and see whether the
test variable exceeds the upper and lower limits.

To add these elements:

Example: Building a Test

1 Select the section of the test in which you want to add the element. For this

example, click Main Test in the Test Browser.

| Test Browser a

| Mew -

t 3| x|

El-Untitled

----- Pre Test

Ifﬂ---Main Test {60 Iterations)
..Save Results

. Post Test

EI--- Test ¥ectors

- HiLimit
“o-LawLirnit

2 Specify the element you want to add to the test section. For this example,
click the New > Test Element button and select MATLAB. A MATLAB
element appears in the Main Test section of your test and the MATLAB
element property page opens in the Properties pane of the SystemTest

desktop.

1-23

1 Getting Started

1-24

-Main Test {60 Iterations)

- Post Test
Test ¥ectors

o eesignal

E|E3 Test Yariables
- HiLimik

-+ LawLinnik

00 =1 A s Ld D3
B

| Test Browser E 4 Properties A X | Tesk ¥ectors |"Test variables
| Mew - | & | X | MATLAE Scripk
-Untitled
E % MATLAE Element u
: -Pre Test

Executes MATLAE code during Pre Test, Main Test, or Post Test

MATLAE wariables declared here can be accessed throughout
& test by creating SystewTest test variasbles as follows:
1) Select the Insert wenu option "Test Variable...™
2] Configure the hnatwe to match the MATLAE wvariable's name

3 In the Properties pane, type the following code in the MATLAB Script
edit box. This MATLAB code calculates a value for Y that is dependent

on the test vector signal.

Y = sin(signal)+ rand -.5;

MATLAE Scripk

%% MATLAE Element
Executes MATLAE code during Pre Test, Main Test, or Post Test

e

o

MATLAE wariables declared here can be accessed throughout

e

a test hy creating 3vstemTest test wvariables as follows:

pr

1] Zelect the Insert mwenu option "Test Variable..."™
21 Configure the namwe to match the MATLAE wariasble's name

e

Woo0 -1 i s L M
e

¥ = zin(=signal) + rand -.5;

i

During each iteration, the SystemTest software evaluates the MATLAB

expression and assigns a value to Y.

Example: Building a Test

4 Add the Limit Check element to the Main Test section of the test. With
the MATLAB element selected, click the New > Test Element button,
and click Limit Check. A Limit Check element appears in the Main
Test section of the test and the Limit Check properties page opens in the
Properties pane. For this example, the Limit Check element must follow
the MATLAB element in the test.

Note You can reposition an element in a test by selecting the element and
then clicking the up and down arrows in the Test Browser toolbar. You
can also drag and drop elements within Main Test. You cannot move
elements between test sections.

1-25

1 Getting Started

| Test Browser ? Properties A X [Test ¥ectors |'Test ¥ariables

—Conditions

=eneral Check I Tolerance Check |

[—:I---h'!ain Test (60 Iterations) ‘ | | ‘
B MATLAR New | & # | X

Limit Check Tesk Wariable I Operator Limit

Save Results

----- Post Test

Test Yectors

signal

ElEa Test Yariables

----- HiLirnit
----- LowLimit

Far this element to pass:

I All rowes must evaluabe to brue {logical AMD) ;I

If this element: Fails:

I Current ikeration continues - I

Assign data o

| =l

In the General Check tab, click the New button to add a limit check.
Notice that the Limit Check element icon in the Test Browser shows

a red x, which indicates that information is missing. The corresponding
red outlining in the Properties pane highlights any fields that require
configuration. A test cannot run unless everything is properly configured.

1-26

Example: Building a Test

5 Specify the limit comparison operations in the Limit Check element.

a In the Test Variable column, click the drop-down list and select a test

variable you created in step 4. For this example, select Y.

b In the Operator column, click the drop-down list and select the
comparison you want to perform. For this example, pick the
less-than-or-equal-to operator, <=.

¢ In the Limit column, click the drop-down list and select the test variable
you want to compare to. For this example, select HiLimit, which is the
test variable you created earlier.

The following figure shows the configuration of this limit.

Properties L4 Test ¥Yectors

| Test ¥ariables

~Conditions

Test Yariable

Operakar

Lirnit

<=

[

HiLirnit

6 To add another limit comparison operation, click the New button again in
the General Check Properties pane. A new row appears below the last
limit you specified. In this new row, set Test Variable to Y, set Operator

to >=, and set Limit to LowLimit.

1-27

1 Getting Started

1-28

The following figure shows the configuration of this second limit.

| Test ¥ariables

—Conditions

General Check | Tolerance Checkl

(b | & | X

Test Yariable Cperator Lirniit
v hd <= || Hiirit |
v he >= ~ | LowLimit hd

For each iteration of the Main Test, the MATLAB element’s expression is
evaluated and a new value assigned to Y. When the Limit Check element
runs, it determines whether the value of Y falls between the HiLimit and
LowLimit values. If Y is outside this range, the test iteration fails. The
default pass/fail criteria for the overall test passes the test only if both
expressions in the limit check evaluate to true.

7 To view the test variables as the test runs, plot the data. To add a Plot
element to the test, click the New > Test Element button, and select
General Plot. A General Plot element appears in the Main Test section,
and the properties page for the element opens in the Properties pane.

Example: Building a Test

|T5thwser E 4 Properties A X | Test Vectors | Test variables
New- | # & | X |
General I [thignsl
Ej Simple_Demo4
Pre Test ‘ Add Axes ‘ AddPlot » | 3¢ Delet= ‘

£} Main Test (60 Tterations)

i MaTLAR m

L Axes

..Save Results
- Post Test
=-f] Test Vectors

EEH Test Variables
-~HiLimit
--LowLimit

~Properties

Figure name:

With each Main Test iteration of the test, the General Plot element updates
a figure window with data you selected.

8 Click the Add Plot button, and choose plot from the list to create a line
plot.

9 We will set up three axes. For the first axes, use the one automatically
created. Configure it as follows:

Click the arrow in Y Data Source and select Y.

Keep the default Line color of blue, and keep the default Line style
of solid.

Change Line marker to point (the first selection in the list that shows
one dot).

On the Options tab, select Keep any existing data on the figure.

10 Add the second and third axes by clicking the Add Plot button again twice
and choosing plot from the list to create a line plot.

11 Configure the second and third axes to match the following table, and using
<Iteration Number> as the X Data Source for each one and selecting

1-29

1 Getting Started

the Keep any existing data on the figure option for each one. The
configured element looks like the figure following the table.

Y Data Sorce | Line Color Line Style Line Marker
Y Blue Solid Point
HiLimit Red Dashed No Marker
LowLimit Black Dashed No Marker

[Test Vectors | Test Variables

General I Options |

‘ Add Axes | Add Plat +

¥ Delete ‘

[=I-Figure
E}--Axes
| plot { <Iteration Mumber >, ¥)
lot { <Iteration Mumber =, HiLimit)

Properties

Plot Type: f\ /\ plot -

¥ Data Source: Ic:Iteration Mumber = LI
Optional
Y Data Source: IanLimit ;I

Line color: iv Line style: I ——————— vl Line marker: Inone vl

1-30

Example: Building a Test

To see the resulting plot, see “Tracking Output” on page 1-38.

Defining Pass/Fail Criteria

You can define whether your test passes or fails by monitoring the outcome of
any or all Limit Check elements during any or all Main Test iterations. Your
test’s threshold of success can range from the passing of any Limit Check in
any single test iteration to the passing of all Limit Check elements in all test
iterations. If your test contains no Limit Check elements, there is no notion
of pass/fail and no pass/fail information is displayed. (Testing of this type

is useful for experimenting with a system or to explore its behavior rather
than validate its performance.)

You can set any of the following conditions to define when your test passes:

All Limit Check elements pass in all test iterations.

All Limit Check elements pass in any test iteration.

Any Limit Check element passes in all test iterations.

Any Limit Check element passes in any test iteration.

You can configure this behavior within the test’s Properties pane. Click the
test name in the Test Browser (named Untitled by default) to open the
test’s properties and look for the section labeled This Test Passes If.

Using the signal test example that you constructed in this section, set the test
to pass if all Limit Check elements pass in all test iterations.

1-31

1 Getting Started

1-32

General | Qutput Files | Distributed |

~This Test Passes If
% all limit check elements in an iteration pass
= Any limit check element in an iteration passes

AND
% All iterations pass

= Any iteration passes

[~ wisualize and plot saved results by launching the Test Results Viewer

Description

Saving Test Results

You can save the results from the iterations of your test in a MAT-file. You
must explicitly specify which test variables to save as test results.

Note Test variables that are not saved as a test result will be lost at the end
of the test execution.

The SystemTest software lets you save results at the end of each iteration.
Before running your test, select the Save Results section in your test and
specify which test variables to save as test results. Click the New Mapping
button and then select from the drop-down list the name of the test variable
to map to a result. You can optionally specify a name for the results that you
want to save. By default, the name of the saved result is the same as the
test variable. The following figure shows the mapping of test variables to
test results.

Example: Building a Test

Test Browser

| Test variables

| Mew = | + 3§ | x | Map Test Variables to Results
=] Simple_Demo4 Specify the test variables you want to save at the end of each Main Test iteration by mapping a test variable to a test result
i»----Pre Test nEme.
=] Main Test (60 Tterations) Mote, test vectors do not need to be specified. By default, they are made available with saved test results,
: i MATLAB
i L Mew Mapping | + 3 | > |
Plot - General Test Variable Result
H Save Results
¥ w |
. i-PostTest —
[él Test Vectors HiLimit w || HiLimit
. Losignal LowLimit | Lowtimit

ElEH Test Variables

- HiLimit
“LowLimit

After specifying which test variables to save as test results, specify the name
of the MAT-file to use. Using this MAT-file you can reload the test results
into the base workspace. By default for a test that is untitled, the SystemTest
software names the file Untitled results.mat and puts the file in the same
folder as the TEST-File. To change the name or location of the MAT-file,
click the test name in the Test Browser, then click the Qutput Files tab in
the Properties pane.

Use the Select File Names section to name the results file. Use the Output
Folder Numbering section to select overwrite behavior. By default, each
time you run the test you overwrite this file unless you select the Create new
folder for each run option. If you select that option, a new folder is created
for each run and a new results file is created and put inside the folder. In this
case, the Outputs subfolder name is appended by successive numbers for each
test run. For example, if the folder name is MyResults, the first test run will
create MyResults\Outputs and the next test run results folder will be called
MyResults\Outputs(1), followed by MyResults\Outputs(2), etc.

1-33

1 Getting Started

1-34

| Test Variables

General Output Files I Distributedl

—Select Output Folder:

{~ Same folder as the MATLAB current folder (PWD)

L

Erowse. .. |

—Select File Mames:

Results file: IUnﬁHed_resuHE.mat

ILIntitIEu:I_rEpu:urt.I'|tml

~Output Folder Mumbering

% Always use the same folder (overwrite files)

{~ Create new folder for each run {use numbered folders)

Use the Select Output Folder section to designate the location to save the

results file, as follows:

e Same folder as TEST-file — This default setting saves any output files to
the same location as the TEST-File. In this case your test and any output
files it generates will be in the same location. You set this location when
you select File > Save to save your test, or if prompted to save when you
close the SystemTest software.

e Same folder as the MATLAB current folder (PWD) — Save any output
files to the current working directory in MATLAB. You can see the current

working directory when you open SystemTest from MATLAB.

* Browse — Select the third option and then click the Browse button to
choose an absolute directory location for the output files. This location
should be stable and not read-only.

Example: Building a Test

Note that the location you select here is also where the Test Report will be
saved if you generate one by selecting the Generate report check box.

Note If a file or folder location is read-only, you will get an error when the
test runs. For results files and Test Reports to be generated, the files and
folder locations must be writable.

Generating a Test Report

When you run your test, the test status appears in the Run Status pane.
This display contains basic information about your test:

® Time elapsed since your test started running.
® Which section your test is in.

¢ How many test iterations have passed or failed as defined by any limit
checks.

® Whether your test completed successfully.

® Any errors that cause your test to stop.

You can generate and save more detail about the running test by enabling the
Test Report, which is a test execution log file in HTML format. This report is
useful when you use limit checks in your test and you want to see specific test
iterations that passed or failed. For example, instead of just finding that a
test iteration failed, the report helps you determine how far a test variable
varied from the upper or lower limit you defined in a Limit Check element.

It also displays any plots that were generated. This report is also useful for
documenting and sharing your test results.

1-35

1 Getting Started

1-36

To enable the Test Report:

1 Select the test name in the Test Browser, then click the Output Files
tab on the Properties pane.

2 In the Select File Names section, select the Generate report check box.

3 Use the default name or type a new name in the edit field next to the check
box.

4 Use the Select Output Folder section to designate the location to save
the Test Report:

e Same folder as TEST-file — This default setting saves any output
files to the same location as the TEST-File. In this case your test and
any output files it generates will be in the same location. You set this
location when you select File > Save to save your test, or if prompted to
save when you close the SystemTest software.

¢ Same folder as the MATLAB current folder (PWD) — Save any
output files to the current working directory in MATLAB. You can see the
current working directory when you open SystemTest from MATLAB.

* Browse — Select the third option and then click the Browse button to
choose an absolute directory location for the output files. This location
should be stable and not read-only.

The Test Report is stored in an Outputs subfolder in this folder, along with
all dependent files, such as plot or Simulink model snapshots. The overwrite
options you set for your test results MAT-file also apply to the file name and
folder of your report file. To learn how to change these options, see “Saving
Test Results” on page 1-32 .

Note that the location you select here is also where the test results will be
saved.

Note If a file or folder location is read-only, you will get an error when the
test runs. For results files and Test Reports to be generated, the files and
folder locations must be writable.

Example: Building a Test

The Test Report contains the following information about the test run,
organized by iteration in the report:

® The test description, if you entered one in the Description field of the
Properties pane of the test.

® A test summary, including start and stop times, number of iterations
completed, number of iterations that passed and failed, and final status
of the test.

e Pass/fail results of Limit Check elements, by iteration.

e Values for any saved results you captured by setting up mappings in Saved
Results, by iteration.

® Test vector values, by iteration.
® A snapshot of your model if you use a Simulink element in the test.

® A snapshot of your plot if you use a Vector Plot, Scalar Plot, or General Plot
element in your test, by iteration.

* A summary of generated files, with links to them. These can include a
Simulink model coverage report and test results.

Note Because the Test Report generates while the test is running, this
option results in the test taking longer to execute.

To see what information the report generates, see “Viewing the Test Report”
on page 1-41.

Saving Your Test
You can save tests so that you can reuse them later. For example, to save
the signal test:

1 Select File > Save As to open the Save file as dialog box.
2 Select a directory location and enter mySavedTest in the File name field.

3 Click Save.

1-37

1 Getting Started

1-38

The SystemTest software saves the test as mySavedTest.test and renames
your test as it appears in the Test Browser. This does not rename the test
results MAT-file or the Test Report file. Their names are controlled separately
from the name of the test, as explained in “Saving Test Results” on page 1-32.

Running Your Test

After you build a test, you are ready to run it. At run time, the SystemTest
software assigns values to test vectors and test variables in the order they
appear in the Test Vectors and Test Variables panes. Each test section
runs elements in the order that they appear in the Test Browser.

To execute your test, do one of the following:

e (Click the Run button.
e Select Run > Run.

® Press the F5 key.

J SystemTest - C:\MATLABSimple_Demod.test*
File Edit Insert Run Tools Desktop ‘Window Help

hﬂjﬂ|ﬂ] -"—'|HRUHDSI:D|:||@

Teskt Browser a \5 | Properties
un

+ § | b4 | || Map Test Variables

|New'

Note While a test is running, you can stop its execution by pressing Ctrl+C
or clicking the Stop button on the toolbar.

Tracking Output

While the test runs, the Run Status pane shows summary test output,
including start and stop times, number of iterations completed, number of
iterations that passed and failed, and final status of the test. It will also
display any error messages if the test has an error.

Example: Building a Test

Generated Files
The fallowing files were generated in CATeampl

Open Filename

Test Results

; Simple_Demo_results. mat
Wiewer

Test Beport Simple_Demo_repotSimple_Demo2_report.html

Final Test Status

Property Value

Start Tirme 05-Jul-2007 10:51:25
Stop Time 0&-Jul-2007 10:51:43
[terations

Completed el

[terations Passed 48
[terations Failed 12

Final Status Failed

Tesk Status: Failed
Time Elapsed: 00:00:17

1-39

1 Getting Started

1-40

If your test includes a Plot element, the SystemTest software creates the
plot and updates the plot during each iteration. Since Limit Check elements
evaluate whether an iteration passed or failed, they directly affect the data
that appears in the Test Report and the Run Status pane.

In the example test, the plot includes the high and low limits defined in the
Limit Check element, to show which test iterations exceed the limits.

ﬂjlﬂé|t§+_\®@£7 »HE‘[DEEE?'X
15 T T T . T
.t
+
+
. *
T
* ¥
+
05 + . *
B PR .
+ - " *
- + +
+
0r * + .
*
+ * b *
+*
+ +
a5l * Lt S |
*y * ¥ - *
o +
+ o+
Ab e
* + * ‘0
_1_5 1 1 1 I 1
0 10 20 a0 40 50 60
[teration Mumber

When the test is done running, the Run Status pane provides links to
generated output. The Generated Files section contains a summary of

Example: Building a Test

generated files, with links to them, such as the Test Report, saved test
results, and the Simulink model coverage report, if your test uses the model
coverage feature.

Analyzing Your Test Results

After the SystemTest software runs your test, you can explore the results that
are generated. This section shows how to:

® View and interpret the Test Report.

® Inspect your test results.

Viewing the Test Report

When you enable the Test Report, the SystemTest software saves information
about each test iteration in an HTML file. To enable the Test Report, check
the Generate report option on the Output Files tab of the Properties
pane before running your test. The report contains summary information
about the test run, snapshots of any plots you used, snapshots of any models
you used, pass/fail results of Limit Check elements, and other information.
See Test Report for a full description of what the report contains.

1-41

1 Getting Started

After a test runs, you can see the contents of this file by clicking Tools >
Test Report or using the Test Report link in the Run Status pane. The
generated output resembles the following.

/MATLAB,/Simple_Demo_Getting_Started_report;/Simple_Demo_Getting_Started reporthtml - | Ellil
File Edit View Go Debug Deskiop Window Help u
= =p c | @ | h | Location: Ifile:,I',I',I’C:,I'MATL.C\B,I'SimpIe_Demo_Getting_Started_report,l'SimpIe_Demo_Getting_Started_report.html LI
Simple_Demo_Getting_Started :!
Pre Test
Iteration 1
Test Vectors
signal 020944
Limit Check
Test Variable Operator Limit Evaluates To
A _ HiLirnit
0.65604 = 1 TRUE
Y _ LoweLimit
065804 >= 1 TRUE
Scalar Plot
1
0.a
*
0.6
4| | _’l_l
Dane v

1-42

Example: Building a Test

>» stresults

stresults =

The Main Test section of the report shows each iteration. You see the value of
the test vector signal and determine the values the Limit Check element used
in evaluating whether the test passed. For the first several iterations, the
value of Y did not exceed either the high or low limits so the iterations passed.
You can also see this in the scalar plot drawn while the test ran. For other
iterations that failed, you can scroll through the report to find the values of Y.

Viewing Test Results

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

For more information, see Chapter 12, “Accessing Test Results from the
MATLAB Command Line”.

To continue the example of Simple Demo, after you run the test, return
to MATLAB and type stresults. The following summary of the results is
returned.

Test Results Object Summary for "Simple Demo':

HumberCfIterations: 60
TestVectorNames: =signal
SavedResultNames: HiLimit, LowLimit, ¥

REesultsDataSet: [60x4 dataset]

There are no Test Vector Groups associated with this test result object.

Artifacts associated with this test result object:

TEST-File

[Simple Demo.test)

1-43

1 Getting Started

You can see that the test contains 60 iterations, that it contains a test vector
signal, and the names of the three saved results are HiLimit, LowLimit,
and Y.

To see a more complete list of properties, type:

get(stresults)

That displays the following.

>> get(stresults)

Result=sDataSet:
DerivedResultNames:
NumberCfIterations:

SavedResultiames:
StartTime:
StopTime:
TestcFile:
TestVectorHames:
Artifacts:

Tag:

U=serData:
Grouping:

{'TE5T-File'

[60x4 dataset]

{}

60

{"HiLimitc" 'LowLimitc' 'Yt}

[2009 & 17 14 54 18.1980]

[2009 & 17 14 54 26.4170]

'H:\DocumentsiSimple Demo.test'

{'signal'}

'H:\DocumentshSimple Demo.test'}

{*'}

1-44

The ResultsDataSet property contains the test results data in the form of a

dataset array. This is what you set up using the Saved Results node in the
Test Browser. See “Saving Test Results” on page 1-32 for more information
on setting up saved results.

To access the ResultsDataSet property, type:
stresults.ResultsDataSet
This returns the test results data in the form of a dataset array.

In the Simple Demo example, a portion of the test results data looks like this:

Example: Building a Test

»» stresults.ResultsDataSet

ans =

zignal HiLimit LowLimit ¥
I1 [0.2094] [1] [-1] [0.5226
Iz [0.4189] [1] -1] [0.8125
I3 [0.6283] [1] -1] [0.2148
T4 [0.8378] [1] -1] [1.1565
IS [1.0472] [1] -1] [0.998
Is [1.25&8] [1] -1] [0.5486
17 [1.4661] [1] -1] [0.T7730
i] [1.6755] [1] -1] [1.0414
IS [1.8850] [1] -1] [1.408
Ti0 [2.0944] [1] -1] [1.3309

In the dataset array, each row represents a test iteration, labeled using the
convention of ['I' + Iteration Number]. This example shows the first 10
iterations. Test vector values are listed first, in alphabetical order, followed
by test results, listed in alphabetical order, as shown in the above figure. This
is a simple way to view the results you set up in Saved Results. The test
results for all iterations are displayed at the command line, even though
only the first ten are only shown here.

You can now plot the results. See “Plotting Results Data” on page 12-10 to
see plots created from these results.

1-45

1 Getting Started

1-46

Working with Test Vectors

® “Creating MATLAB Expression Test Vectors” on page 2-2

® “Creating Grouped Test Vectors” on page 2-5

® “About Test Vectors and the MATLAB Workspace” on page 2-13
e “Creating MAT-File Test Vectors” on page 2-14

e “Creating Randomized Test Vectors with Probability Distributions” on
page 2-20

® “Creating Spreadsheet Data Test Vectors” on page 2-46

¢ “Creating Simulink Design Verifier Data File Test Vectors” on page 2-55
e “Creating Signal Builder Block Test Vectors” on page 2-69

® “Creating a Test Case Data Test Vector” on page 2-75

¢ “Using a MATLAB Element to Access Test Case Data Test Vector
Information” on page 2-78

¢ “Editing a Test Vector from within an Element” on page 2-79

2 Working with Test Vectors

Creating MATLAB Expression Test Vectors

Test vectors define the parameter space or set of test cases you want to run.
Test vectors are composed of values that can be derived from a MATLAB
expression. You can use any MATLAB expression that evaluates to a 1-by-N
matrix or cell array to define your test vector. You must have at least one test
vector defined to run a test.

The total number of Main Test iterations is determined by permuting all test
vector values. For example, if one test vector is a 1-by-3 array and another is
1-by-2, it would result in a total of six iterations covering all the test vector
value combinations.

To add a test vector:

1 Click the New button in the Test Vectors pane.

In the Insert New Test Vector dialog box, keep the default test vector type
of MATLAB Expression.

2-2

Creating MATLAB Expression Test Vectors

) Insert Test Vector |

Select Test Vector type:

General I Grouping |

MATLAE Expression
MAT-File

Mame:

Probability Distribution

Signal Builder Blodk

Simulink Design Verifier Data File
Spreadshest Data Expression: |[1:1:10]
Test Case Data

Type: IMATLAB Expression

Test Vector successfully evaluated to a 1x10 double

[~ Evaluate Test Vector each time the testis run

oK Cancel

2 Assign a name to the vector in the Name field.

3 Enter the value by typing in values or a MATLAB expression in the
Expression field.

The Size field fills in automatically based on what you entered if you press
Enter or click outside of the Size field. For example, if you entered 1 : 1

2-3

2 Working with Test Vectors

10 in the Expression field, the Size would be a 1 x 10 double, which
means 10 iterations.

4 Select the Evaluate Test Vector each time the test is run option if
you want to use new values every time the test is run. For example, if
your expression included a rand function, a new set of random numbers
would be calculated each time. Leave it unselected if you want to use the
same values each time the test is run.

5 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

Note Grouping test vectors determines how they will be iterated through
when the test runs. For information on grouping vectors, see “Creating
Grouped Test Vectors” on page 2-5.

For an example of creating test vectors in a test, see “Creating a Test Vector”
on page 1-16.

2-4

Creating Grouped Test Vectors

Creating Grouped Test Vectors

When you create a test vector, it is an ungrouped vector by default, except
for Probability Distribution test vectors. You can also create grouped vectors,
in order to affect the way iterations are run. By grouping test vectors, they
will be indexed simultaneously with the other vectors in their group. Each
set of grouped values are then permuted with all the ungrouped test vectors.
This gives more control over the flow of tests and is useful for Design of
Experiments (DOE) or Monte Carlo-based testing as well as defining signal
groups, similar to those defined in the Simulink Signal Builder block.

For example, if you are testing a throttle body controller, you may want to
sweep across a range of input level or gain values, while simultaneously
selecting different throttle body types, each defined by their mass and
damping characteristics.

An example of the vectors in this scenario could look like this:

gain [1 10 100]
mass [a b c d]
damping = [w x y Zz]

If the gain vector is ungrouped, and the mass and damping vectors are
grouped, it will result in mass and damping being indexed simultaneously for
each value of gain. The test runs would look like this:

Run 1: (1, a, w)
Run 2: (1, b, Xx)
Run 3: (1, c, V)
Run 4: (1, d, z)
Run 5: (10, a, w)
Run 6: (10, b, x)
Run 7: (10, c, vy)
Run 8: (10, d, z)

Run 9: (100, a, w)
Run 10: (100, b, x)
Run 11: (100, c, vy)
Run 12: (100, d, z)

2-5

2 Working with Test Vectors

2-6

Note Grouped test vectors must be the same length.

You create a grouped test vector as you do any other vector, by clicking
the New button in the Test Vectors pane. To group a vector, change the
selection using the Grouping tab in the Insert Test Vector dialog box. You
can group any type of test vector, and you can create multiple test vector
groups. You can also group or ungroup test vectors after you create them.

In general, it doesn’t usually make sense to group Signal Builder Block
test vectors or Simulink Design Verifier Data File test vectors. There are
advantages to grouping MATLAB Expression, Probability Distribution, and
Spreadsheet Data test vectors at times, depending on your test goals. One
of the main advantages to grouping is for Monte Carlo-based testing, as
described by the example above.

To group a test vector:

1 Create a test vector and configure it in the General tab of the Insert Test
Vector dialog box.

2 Click the Grouping tab in the Insert Test Vector dialog box.
3 Select the Assign test vector to a group option.

A group is created and given the default name of Group1, as shown here.

Creating Grouped Test Vectors

) Insert Test Vector

X
Select Test Vector type: General Grouping I
VAT i Ungrouped test vectors will be permuted with other test vectors in every possible combination.
le
Probability Distribution Grouped test vectors will be combined sequentially with all test vectors in the same group, and then permuted
Signal Builder Block with all other test vectors.
Simulink Design Verifier Data File .)
Spreadshest Data [Assign test vector to a group
Test Case Data
<Double dick to enter new group> Delete |
Groupl
Test wectors in group:
Mame Length
TestVectorl 10
Mote: All test vectors in the group must be of equal length.
oK | Cancel |

4 To change the name, type the new name over the default name and press
Enter.

5 Click OK in the Insert Test Vector dialog box.

In the Test Vectors pane, the name of the group is displayed in the table.

6 Now if you create another test vector, you can add it to the same group as
the first one. To do this, click the New button again.

2-7

2 Working with Test Vectors

) Insert Test Vector

Select Test Vector type:

MATLAB Expression
MAT-Fil=

Probability Distribution

Signal Builder Block

Simulink Design Verifier Data File
Spreadsheet Data

Test Case Data

7 Select the test vector type and configure it in the General tab.

8 Click the Grouping tab, and select the Assign test vector to a group
option.

Note that test vectors in a group must all be the same length.

If you already have one test vector group, the new vector is placed in that
group by default.

x|

General Grouping I
Ungrouped test vectors will be permuted with other test vectors in every possible combination.

Grouped test vectors will be combined sequentially with all test vectors in the same group, and then permuted
with all other test vectors,

I Assian test vector to 3 group

<Double dick to enter new group >

Delete |

Groupl

Test vectors in group:

MName Length

TestVector2
TestVectorl

Mote: All test vectors in the group must be of equal length.

OK Cancel

2-8

Creating Grouped Test Vectors

9 Click OK in the Insert Test Vector dialog box.

2 Working with Test Vectors

You can create multiple test vector groups. Once you have multiple groups,
when you create new test vectors, you can select which group to put them in as
you create them. The following figure shows Group1 containing TestVector1
and TestVector2, and Group2 containing TestVector3 and TestVector4.

2-10

Creating Grouped Test Vectors

Properties | Test Vectors LI Test Variables

Mew... | . | Evaluate
MName Length I Group Mame I Type
TestVectorl 10 Groupl MATLAE Expression
TestVector2 10 Groupl MATLAE Expression
TesktVector3 25 Group2 MATLAE Expression

TestVectord

Y 4
=

General Grouping

Ungrouped test vectors will be permuted with okher test vectors in every possible combination.

test vectars.

¥ Assign test vector ko a group

«Double click to enter new group = Delete |

Groupl

Test veckors in group:

Mame Length
TestVeckord 25

TestVeckor3 25

Mate: All test vectors in the group must be of equal length.

Grouped test vectars will be combined sequentially with all best vectors in the same group, and then permuted with all other

2-11

2 Working with Test Vectors

You can also create groups after test vectors are already created by editing a
test vector in the Test Vectors pane. Select a test vector in the table to edit
its properties in the editor area below the table. There you can add it to a
group using the Grouping tab. You can also add it to a group in the table by
clicking in the Group Name column.

Managing Test Vector Groups

You can modify groups to ungroup a test vector, move a test vector to another
group, rename a group, or delete a group.

2-12

Ungroup a test vector — To remove a test vector from a group, select
it in the test vectors table, then click the Group Name column. Use the
down-arrow to select the first entry, which is a blank space. The Group
Name column will then be empty for that test vector, indicating it is no
longer in a group.

Move a test vector to another group — To move a test vector from one
group to another, select it in the test vectors table, then click the Group
Name column. Use the down arrow to select the group to move it to. The
Group Name column will then show the new group name.

Rename a group — You can change the name of a test vector group either
in the table or in the editor area. Renaming a group in the table results

in the group name for a single test vector being changed. Renaming a
group in the editor area results in the name being changed for all vectors
in the group.

To rename a group for a single test vector, select that vector in the table,
then click in the Group Name column. Type a new name and press
Enter.

To rename a group for all test vectors in the group, select one of the
test vectors in the table. Then in the Grouping tab in the editor area,
select that group name in the upper section and type a new name. Press
Enter. You then see all of the test vectors in that group change to the
new name in the table.

Delete a group — To delete a test vector group, select one of the test
vectors in the table that is in that group. Then in the editor area, under the
Grouping tab, that group name will be selected. Click the Delete button
on the Grouping tab. The group is deleted and all test vectors belonging
to that group become ungrouped.

About Test Vectors and the MATLAB® Workspace

About Test Vectors and the MATLAB Workspace

The SystemTest software has its own internal workspace that it uses to
manage test variables and test vectors independently. However it does
leverage the MATLAB workspace during test execution, and when using
a MATLAB element.

During test execution, SystemTest test variables and test vectors are
evaluated in the MATLAB base workspace. Then at the end of test execution,
they are cleared out and the MATLAB base workspace is restored to what it
was before the test execution.

When using a MATLAB element in the SystemTest software, you can
reference a variable in the base workspace without having to create a test
vector or test variable in the SystemTest software. However the SystemTest
software will not be aware of this data, so you could not make use of it in any
other element type or in saved results. You can only access it from a MATLAB
element. If you need to use it in other elements, you can create test variables
or test vectors in the SystemTest software.

2-13

2 Working with Test Vectors

Creating MAT-File Test Vectors

The MAT-File test vector offers an easy way for you to use data from a
MAT-file in the SystemTest software.

To add a test vector:

1 Click the New button in the Test Vectors pane.

In the Insert New Test Vector dialog box, select the test vector type of
MAT-File.

2-14

Creating MAT-File Test Vectors

) Insert Test Vector

X

Select Test Vector type: General I '.r'ariablesl — I
MATLAE Expression

Mame:
Probability Distribution

Type: MAT il
Signal Builder Block s I =
Simulink Design Yerifier Data File _
Spreadsheet Data MAT-Files to Read
[[esEasehials ‘j Add File(s) | f | ‘ | X Remove Fie Select Al Clear all

Unable to evaluate Test Vector. Configuration may be incomplete or in error,

OK Cancel

The red border indicating that the element is in an error state is normal,
and will go away once you add file(s) in step 4.

2 Assign a name to the vector in the Name field.

3 Click the Add File(s) button.

2-15

2 Working with Test Vectors

4 In the Select MAT-File dialog box, browse for your MAT-file(s). You can
select multiple files at the same time. Only MAT-files can be added. Other
file types produce an error. After selecting the file(s), click the Open button
to bring them into the test vector.

In the MAT-Files to read table on the General tab, MAT-files that are
checked will be used in the test. Unchecking a file means it will not be
included in the test.

5 Click the Variables tab. All the common variables contained in all the
selected MAT-file(s) you added appear in the table.

2-16

Creating MAT-File Test Vectors

) Insert Test Vector x|

Select Test Vector type:

General Variables I Grouping |

MATLAB Expréssion The following variables are in all the MAT-Files:

Probability Distribution

v | Variables
Signal Builder Block
Simulink Design Verifier Data File ¥ Distance
Spreadsheet Data W Pressure
Test Case Data
¥ Speed
[¥ Torgue
¥ ans

oK | Cancel

Note that the variables are sorted in alphabetical order. If you have

multiple MAT-files, only variables that are common across all files appear
in the table.

Variables that are checked will be used in the test. Unchecking a variable

means it will not be included in the test. In the example above, all variables
except for ans will be used in the test.

2-17

2 Working with Test Vectors

2-18

Checking or unchecking the checkbox in the table header will select or
unselect all variables. It is a Select All/Unselect All toggle option.

6 MAT-File test vectors are ungrouped by default. On the Grouping tab,

you can select the Assign test vector to a group option if you want to
group the test vector.

Grouping test vectors is useful for reducing the number of iterations to
execute. It means that the SystemTest software will sequentially combine
values for all grouped test vectors, instead of permuting their values. See
“Creating Grouped Test Vectors” on page 2-5 for more information on
grouped test vectors.

7 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

Important Usage Notes

¢ If you use multiple MAT-Files in a test vector, only commonly named

variables included in all of the files will be read and used. For example, if
you have variables in MAT-file A called Speed, Distance, and Pressure,
and in MAT-file B you have variables Speed, Pressure, and Torque,
only Speed and Pressure will be shown since they are included in both
MAT-Files. Distance and Torque will not be used since they do not exist
in both files.

If the order of execution of the MAT-files is important, then use the up and
down arrows to order the files accordingly in the test vector table. Each
MAT-file is one iteration of the test vector, and they are executed in the
order they appear in the table.

The test vector is evaluated every time the test is run — that means the
data is read from the MAT-File(s) every time the test is run.

If a MAT-File test vector is mapped to the inport blocks in a Simulink
element using the All Inport blocks are mapped option, the model

is simulated using all the variables that are selected in the Variables
table in the test vector. If it is mapped to the inport blocks using the
Individual Inport blocks are mapped option, the model is simulated
with individually selected variables from the MAT-file.

Creating MAT-File Test Vectors

® Checking or unchecking the checkbox in the Variables table header will
select or unselect all variables. It is a Select All/Unselect All toggle option.
This option affects the variables selection behavior when you add or remove
or select or unselect MAT-files in the MAT-file list on the General tab.

For example, if the checkbox is selected (to Select All variables) and then a
MAT-file is added/removed or selected/unselected, all common variables
will be selected by default.

If the checkbox is unselected (to Unselect All variables) and then a
MAT-file is added/removed or selected/unselected, all common variables
will be unselected by default.

2-19

2 Working with Test Vectors

2-20

Creating Randomized Test Vectors with Probability
Distributions

In this section...

“Using Probability Distributions in Test Vectors” on page 2-20
“Creating a Test Vector with Probability Distributions” on page 2-20
“Viewing Data While Configuring the Test Vector” on page 2-25
“The Probability Distributions” on page 2-28

“Example: Creating Test Vectors with Probability Distributions” on page
2-36

Using Probability Distributions in Test Vectors

The SystemTest software provides an easy way to generate randomized test
vector values for your test. You can use probability distribution functions to
set up test vectors, which is useful for performing Monte Carlo analyses.

If you have the Statistics Toolbox™ software, the SystemTest software
integrates with it to provide use of some of its probability distribution
functions, such as exponential, gamma, lognormal, T (Student’s t), and
Weibull. If you do not have the Statistics Toolbox software, you can use the
MATLAB probability distribution functions normal (Gaussian) and uniform.

Creating a Test Vector with Probability Distributions

You can use a probability distribution when you create or edit a test vector.
To use a probability distribution:

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter a name for the new vector in the Name field.

4 Select a distribution function from the Distribution list.

Creating Randomized Test Vectors with Probability Distributions

) Insert Test Vector x|

Select Test Vector type:

General I Grouping |

MATLAE Expression
MAT-File

Mame: |Test1-'ect3r 1

Probability Distribution Tvoe: T e Date
Signal Builder Block ype: I e e e iew Data... |

Simulink Design Verifier Data File

Spreadsheet Data N -
 rest Case Data Distribution: Mormal {Gaussian))
Exponential
Mean: Gamma
Lognormal
Standard deviation: -
T
Mumber of values: .
Uriform
Weibull

Test Vector successfully evaluated to a 1x10 double

[~ Evaluate Test Vector each time the test is run

OK | Cancel |

If you have the Statistics Toolbox software, all of the functions shown in
the figure appear in the list. If you do not have this toolbox, you can use
normal (Gaussian) and uniform.

For information on the distribution functions, see “The Probability
Distributions” on page 2-28.

5 Once you select a distribution, the relevant options appear. Fill in the
parameters for your distribution.

2-21

2 Working with Test Vectors

2-22

For example, normal (Gaussian) allows you to set Mean and Standard

deviation.
General I Grouping |
Mame: ITest’l.-'Etb:url
Type: IF‘l'c-baI:-iIit'-; Distribution View Data... |
Distribution: I Mormal {Gaussian) LI
Mean: |1.D

Standard deviation: I 1.0

Mumber of values: I 10

Test Vector successfully evaluated to a 1x10 double

[~ Evaluate Test Vector each time the test is run

6 After setting the relevant probability parameters, type in the Number of
values you want to use. That is the number of values you would like to
generate for the test vector.

The Number of values must be a positive integer. It must also be the same
value for all of your probability distributions because the vector is grouped.

7 If you want to see the data you have configured before running the test,
click the View Data button. This displays a histogram visualization of the
probability distribution data. If you are not satisfied with the data as it is
configured, you can adjust one or more of the parameters and hit Enter to
see the changes in the figure window.

For more information on viewing the data, see “Viewing Data While
Configuring the Test Vector” on page 2-25.

8 Select the Evaluate Test Vector each time the test is run option if you
want to use new values every time the test is run. For example, for the

Creating Randomized Test Vectors with Probability Distributions

probability distribution, a new set of values for the parameters (such as
Mean) would be calculated each time. Leave it unselected if you want to
use the same values each time the test is run.

If you are doing Monte Carlo testing and you want repeatability of the
data, do not use this option.

9 On the Grouping tab, keep the default of Grouped, or select Ungrouped.

Randomized test vectors with probability distributions are grouped by
default, as indicated by Grouped being selected.

Grouping test vectors is useful for reducing the number of iterations to
execute. It means that the SystemTest software will sequentially combine
values for all grouped test vectors, instead of permuting their values. In
the case of randomized test vectors, grouping avoids introducing additional
variation into your test. See Creating Grouped Test Vectors for more
information on grouped test vectors.

10 Click OK in the Insert Test Vector dialog box.

The new vector then appears in the Test Vectors pane.

2-23

2 Working with Test Vectors

Properties

| Test Vectors LA Test Variables

Mew... | . |

Evaluate

Mame Length Group Mame

TestVectarl

Groupl

F %
—

Type
Probability Distribukion

General | Grnupingl

Mame: ITest'-.n'ectl:url

Type: IF'r-:uI:u ability Distribution
Distribution: I Maormal (Gaussian)
Mean: |1 .0

Skandard deviation: |1 0

Mumber of values; |1EI

Test Vectar successfully evaluated ko a 1x10 double

[+ Ewvaluate Test Vector ach kime the test is run

2-24

Creating Randomized Test Vectors with Probability Distributions

General | Grouping |

Viewing Data While Configuring the Test Vector

You can view your probability distribution data while configuring the test
vector, without having to run the test. You can quickly inspect the test vector
data for outliers, data range coverage, or correctness of the test function
before running the test. This allows you to make necessary adjustments until
you have data you are satisfied with, which saves time.

To view data while configuring a test vector:

1 Create the test vector by clicking the New button in the Test Vectors pane.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Select a distribution function from the Distribution list.

4 Once you select a distribution, the relevant parameters appear. Fill in the
parameters for your distribution.

In this example, Normal (Gaussian) is shown, with a mean of 1.0, standard
deviation of 3, and 40 values.

Mame:

Type: IPrc-babiIit-_: Distribution View Data... |
Distribution: I Mormal (Gaussian) % LI
Mean:

Standard deviation: |3

Mumber of values: Iﬁ

Test Vector successfully evaluated to a 1x40 double

[~ Evaluate Test Vector each time the testis run

5 Click the View Data button on the General tab.

2-25

2 Working with Test Vectors

6 The data viewer window displays the data you configured in a histogram
visualization. The values are displayed on the x-axis, and in this case they
range from approximately -6 to 9. The parameters are also displayed
textually in the figure window in the upper right corner. For comparison

purposes, a light orange line showing the “ideal” probability distribution is
also displayed on top of your data.

File Edit WView Insert Tools Desktop Window Help LY

D de B |RAMBDE L2

OE a0

12 .

Count

Values

7 When satisfied with the data that is shown, click OK to finish creating
the test vector.

8 If you are dissatisfied with the data, change one or more parameters and
redisplay it. In this case, change the standard deviation from 3 to 2. To
change a value, type a new value in the parameter you want to change

2-26

Creating Randomized Test Vectors with Probability Distributions

and either press Enter or click outside of the field. The figure window
automatically updates to display the new data.

File Edit View Insert Tools Desktop Window Help N

A= R A E

10 T

gL

Count
[y

Values

You can also view and modify the test vector data any time after creating
a test vector. Access the data viewer by clicking the Test Vectors tab in
the Properties pane, then selecting a test vector from the list. That test
vector then becomes editable, and you can click the View Data button on
the General tab.

2-27

2 Working with Test Vectors

2-28

The Probability Distributions

If you have the Statistics Toolbox software, the SystemTest software
integrates with it to provide use of some of its probability distribution
functions, such as exponential, gamma, lognormal, T (Student’s t), and
Weibull. If you do not have the Statistics Toolbox software, you have access
to the MATLAB probability distribution functions normal (Gaussian) and
uniform.

The SystemTest software supports the distribution functions shown in the
following sections. Select the Probability Distribution test vector type in
the Insert Test Vector dialog box to access the functions.

The Insert Test Vectors dialog box shows fields specific to the distribution you
pick in the list, as shown in the sections below. In each case, enter values for
the function-specific parameters, and then enter the Number of values you
want to generate for the test vector.

Normal (Gaussian)

The normal distribution is a two-parameter family of curves. The first
parameter is the mean. The second parameter is standard deviation. Normal
is often used for data that is symmetrical about the mean.

Creating Randomized Test Vectors with Probability Distributions

I] Grouping |

Mame: ITest'-.-'ectnrl

Type: IF‘ru:uI:uaI:uiIity Diskribukion

Distribution: I Mormal (Gaussian) ;I

Mean: |1.IZI

Standard deviation: |1 |

Mumber of values: |1IZI

Test Weckor successfully evaluated to a 1:x10 double

[~ Evaluate Test Vector each time the test is run

Normal uses the function randn and takes parameters for Mean and
Standard deviation. The SystemTest software uses the following
calculation for normal:

mean + Std_Dev * randn(1, #values)

For more information, see randn in the MATLAB documentation.

Uniform

The uniform distribution (also called rectangular) has a constant probability
density function between its two parameters, the minimum and the maximum.

The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

2-29

2 Working with Test Vectors

2-30

General | Erauping |

fame: ITest‘-.-'ectDrE
Type: IF‘ru:-I:uaI:uiIit&.-' Diskribution
Distribution: .

Minirnum alue: |1 .0

Maxirmurn Yalue; |1 .0

rumber of walues: |1IZI

Test Vector successfully evaluated ko a 1x10 double

[T Ewvaluate Test Yector each kime the test is run

Uniform uses the function rand and takes parameters for Minimum
value and Maximum value. The SystemTest software uses the following
calculation for uniform:

min + (max-min) * rand(1, #values)

For more information, see rand in the MATLAB documentation.

Exponential

The exponential distribution is a special case of the gamma distribution. The
exponential distribution is special because of its utility in modeling events
that occur randomly over time.

Exponential is often used to model the time between independent events that
happen at a constant average rate. For example, you could use it for the
time it takes a radioactive particle decays, or the time between messages
sent over a network.

Creating Randomized Test Vectors with Probability Distributions

General | Erouping |

Marme: ITest‘-.-'ectl:an

Type: IF‘ru:uI:uaI:uiIiI:y Diskribukion

Distribukion:

Mean:

Mumber of values: |1IZI

Test Wector successfully evaluated ko a 1x10 double

[~ Ewvaluate Test Yeckor each ke the test is run

Exponential uses the function exprnd and takes one parameter for Mean.

For more information, see Exponential Distribution in the Statistics Toolbox
documentation.

2-31

2 Working with Test Vectors

Gamma
The gamma distribution models sums of exponentially distributed random
variables.
ieneral I arouping |
Marme: ITest'-.-'ectDrz
Type: IP'ru:uI:uaI:uiIity Distribution

Distribution:

A f1.0

B [1.0

Mumber of values; |1IZI

Test Yector successfully evaluated o a 1x10 double

[~ Ewaluate Test Veckar each time the besk is run

Gamma uses the function gamrnd and takes parameters for A and B.

For more information, see Gamma Distribution in the Statistics Toolbox
documentation.

2-32

Creating Randomized Test Vectors with Probability Distributions

izeneral | arouping |

Lognormal

The normal and lognormal distributions are closely related. The lognormal
distribution is applicable when the quantity of interest must be positive, since
log(X) exists only when X is positive.

Lognormal can be used to model something that can be thought of as the
multiplicative product of many small independent factors. A common
example is the long-term return rate on a stock investment, because it can
be considered as the product of daily return rates.

Marme: ITest'u'ectDrZ

Type: IPrDbabi“t‘:.-‘ Diskribution
Distribution:
Mean: I 1.0

Standard deviation: |1 0

Mumber of values; |1III

Test Vectar successfully evaluated ko a 1x10 double

[~ Evaluate Test Yector each kime the test is run

Lognormal uses the lognrnd function and takes parameters for Mean and
Standard deviation.

For more information, see Lognormal Distribution in the Statistics Toolbox
documentation.

2-33

2 Working with Test Vectors

T

The T (Student’s t) distribution is a family of curves that depend on a single

parameter v (the degrees of freedom). As v goes to infinity, the T distribution
approaches the standard normal distribution.

T is often used to estimate properties when the sample size is small.

izeneral | (Erouping |

Marme: ITest'u'ectDrz
Type: IPI’DtIEItIi"t':." Distribukion
Distribution: -

Cegrees of freedom: |1 1]

Mumber of values; |1III

Test Yector successfully evaluated to a 1x10 double

[~ Ewaluate Test Yectar each time the kest is run

T uses the trnd function and takes one parameter for Degrees of freedom.

For more information, see Student’s t Distribution in the Statistics Toolbox
documentation.

2-34

Creating Randomized Test Vectors with Probability Distributions

Weibull

The Weibull distribution is an appropriate analytical tool for modeling the
breaking strength of materials. Current usage also includes reliability
and lifetime modeling. The Weibull distribution is more flexible than the
exponential distribution for these purposes.

izeneral I (=t ouping |

Marme: ITest'-.-'ectDrz

Type: IP'ru:uI:uaI:uiIity Distribution
Distribution:
A
EB:

Mumber of vahies: |1IZI

Test Yector successfully evaluated to a 1x10 double

[~ Ewaluate Test Vector each time the test is run

Weibull uses the function wblrnd and takes parameters for A and B.

For more information, see Weibull Distribution in the Statistics Toolbox
documentation.

2-35

2 Working with Test Vectors

2-36

Example: Creating Test Vectors with Probability
Distributions

Many models must take into account the effect of evaluating uncertainty in
model parameters. In this example the tester needs to account for uncertainty
in electric motor characteristics that come off the production line so the
tester defines the model’s parameters as distributions of values, rather than
as single fixed values. The tester then performs a Monte Carlo simulation,
running the model repeatedly with random combinations of parameter values
to account for variability in manufacturing.

In this case, the tester defines the uncertain motor parameters as test vectors.
The test varies parameters for armature resistance, armature inductance,
and shaft inertia.

To create the first vector, for armature resistance:

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter ArmatureResistance in the Name field.

4 In the Insert Test Vector dialog box, use the default distribution, normal
(Gaussian).

You do not need to have the Statistics Toolbox software installed to use
normal (Gaussian) since it is included with MATLAB.

5 In the Mean field, enter 1.71.

6 In the Standard deviation field, enter .056.

Creating Randomized Test Vectors with Probability Distributions

7 In the Number of values field, enter 1000.

General | Grouping |

Mame: I.ﬁ.rmab_lreResistance

Type: IPru:uI:uaI:uiIit*r' Distribution View Data... |
Distribution: I Mormal {Gaussian) d
Mean: |1. 71

Standard deviation: I.IZIEG

Mumber of values: IIDEIIII

Test Vector successfully evaluated to a 1x1000 double

[~ Evaluate Test Vector each time the testis run

For this vector, the test is varying armature resistance up to a standard
deviation of .056, around a mean of 1.71, and using 1000 values.

8 Click the View Data button to see a visualization of the test vector
data that you configured. This displays a histogram visualization of the
probability distribution data that will be used when the test is run. If you
are not satisfied with the data as it is configured, you can adjust one or
more of the parameters and hit Enter to see the changes in the figure
window. In this case, we keep the data, as shown here.

2-37

2 Working with Test Vectors

File Edit WView Insert Tools Desktop Window Help

N de | B|RAMBDEN- 2|/ 0E al

300 T T T

250

200

150

Count

100

50

1.4 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
Values

For more information on viewing the data, see “Viewing Data While
Configuring the Test Vector” on page 2-25.

9 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

2-38

Creating Randomized Test Vectors with Probability Distributions

Properties | Test Vectors -8l Test Variables '

New... | » | Evaluate

Marme Length Group Mame

ArmatureR.esistance Groupl

W
=

zeneral I Grauping |

Mame: I.ﬂ.rmatureResistance

Type: IPr-:uIJ ability Distribution

Distribution: I Marmal (Gaussian)

Mean: |1.?1

Standard deviation: |.056

Mumber of values: IIUUU

Test Vector successfully evaluated to a 1x1000 double b

[~ Ewaluate Tesk Vector each time the kast is run

4 o

To create the second vector, for armature inductance:

2-39

2 Working with Test Vectors

2-40

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter ArmatureInductance in the Name field.
4 Use the default distribution, normal (Gaussian).
5 In the Mean field, enter .3.

6 In the Standard deviation field, enter .01.

Creating Randomized Test Vectors with Probability Distributions

7 In the Number of values field, enter 1000.

General I Grouping |

MName: IArmatl.lreInductance

Type: IF‘ru:utuabiIit*,' Distribution View Data... |
Distribution: I Mormal (Gaussian) LI
Mean: |.3

Standard deviation: I.Ell

Mumber of values: |1IZIIZIIZI

Test Vector successfully evaluated to a 1x1000 double

[~ Evaluate Test Vector each time the test is run

For this vector, the test is varying armature inductance up to a standard
deviation of .01, around a mean of .3, and using 1000 values.

8 You can optionally click the View Data button to see a visualization of the
test vector data that you configured.

9 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

2-41

2 Working with Test Vectors

2-42

Properties | Test Vectors Ll Test Variables

Mew... | = | Evaluats

Mame I Length I Group Mame I

Type

ArmatureInductance 1000 Probabilit

F S,
—

ArmatureR esistance 1000 Groupl Prabability Distribution

stribution

iGeneral I Grouping |

Mame: Iﬂ.rmaturelnductance

Type: IF‘r-:uI:u ability Diskribukion
Distribukion: I Mormal {Gaussian)
Mean: |.3

Standard deviation: I.Ul

Mumber of values: IlUUU

Test Veckar successfully evaluated to a 1x1000 double

[~ Ewaluate Test Veckar each time the kest is run

To create the third vector, for shaft inertia:

Creating Randomized Test Vectors with Probability Distributions

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Probability Distribution as
the test vector type.

3 Enter ShaftInertia in the Name field.
4 Use the default distribution, normal (Gaussian).
5 In the Mean field, enter 44.5.

6 In the Standard deviation field, enter .443.

2-43

2 Working with Test Vectors

2-44

7 In the Number of values field, enter 1000.

General I Grouping |

MName: IShaf‘t[nerﬁa

Type: IF‘rDbabiIit‘; Distribution View Data... |
Distribution: I Mormal (Gaussian) LI
Mean: |44.5

Standard deviation: |.443

Mumber of values: IIDIZIIZI

Test Vector successfully evaluated to a 1x1000 double

[~ Evaluate Test Vector each time the testis run

For this vector, the test is varying shaft inertia up to a standard deviation
of .443, around a mean of 44.5, and using 1000 values.

8 You can optionally click the View Data button to see a visualization of the
test vector data that you configured.

9 Click OK in the Insert Test Vector dialog box.

The new vector appears in the Test Vectors pane.

Creating Randomized Test Vectors with Probability Distributions

Properties | Test Vectors Ll Test Variables '

Mew... | » | Evaluate
MName I Length I Group Mame I Type
ArmatureResistance 1000 Groupl Probability Distribution
Armaturelnduckance 1000 Groupl Probability Distribution

ShaftInertia 1000 robability Distribution

W
—

General I Grouping |

Mame: IShaFtInertia

Type: IF'r-:uI:u ability Diskribution
Distribukion: I Mormal (Gaussian)
Mean: |44.5

Standard deviation: |.443

Mumber of values: IlUUU

Test Vector successfully evaluated to 3 1x1000 double s

[~ Evaluake Test Veckor each kime the kest is run

2-45

2 Working with Test Vectors

Creating Spreadsheet Data Test Vectors

In this section...

“Introduction” on page 2-46
“Creating a Spreadsheet Data Test Vector” on page 2-46
“Configuring the Spreadsheet Data Test Vector” on page 2-50

“Replacing Strings” on page 2-53

Introduction

The Spreadsheet Data test vector type can be used to read data from
Microsoft® Excel® files or .csv files into the SystemTest software. This
feature also supports file formats used by the MATLAB x1sread function.

You can read spreadsheet data from multiple sheets, and can read whole
sheets or a subset of a sheet.

For a detailed example using the Spreadsheet Data test vector, see “Example:
Overriding Simulink Inport Blocks Using a Spreadsheet Data Test Vector”
on page 4-28.

Note For additional technical information and limitations of this feature,
see the SystemTest Release Notes.

Creating a Spreadsheet Data Test Vector
To create a Spreadsheet Data test vector:

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Spreadsheet Data as the test
vector type.

2-46

Creating Spreadsheet Data Test Vectors

) Insert Test Vector |

il e General I Data Selection | String Replacementl Grouping |
MATLAE Expression

MAT-File henz

Probability Distribution

Type: = dsheet Dat

Signal Builder Block ¥pe I preadsneet Uatd
Simulink Design Verifier Data File ;

Spreadsheet Data Files to Read

[l j Add File(s) | + | | 2 Remove File Select Al Clear Al

Unable to evaluate Test Vector. Configuration may be incomplete or in errar.

[~ Evaluate Test Vector each time the test is run

oK Cancel

3 On the General tab, click the Add File button.

Browse to your Microsoft® Excel® spreadsheet file or a .csv file and click
Open.

4 The first sheet of your file is selected by default. If the file has multiple
sheets and you want to use them, select the other sheet(s). There is no limit

to the number of sheets you can use.

2-47

2 Working with Test Vectors

5 Select the Evaluate Test Vector each time the test is run option if you

want to read the file every time the test is run. Leave it unselected if you
want to use the same values each time the test is run.

In the case of a Spreadsheet Data test vector, using this option means that
data would be read from the spreadsheet file every time the test is run. If
you expect the data to change and want to have it read every time, select
this option. If you know the data is static or you do not want it to be read
each time, unselect the option.

Note that you can use the Evaluate button in the Test Vectors pane any
time for an immediate evaluation.

On the Data Selection tab, choose the range to use in the test vector.
Enter this information in the Data Range section to select the range.

Specify whether your data is arranged by column or row using the Data is
arranged by option.

Then select the specific range using the Read data from option. For
example, if you have a file that has data in columns A, B, and C, and there
is data in rows 3 through 13 and you want to read all the data, in the Read
data from column option, fill in A to C. Then in the starting at row
option, enter 3. The SystemTest software will read to the end of the data.

All data in the designated columns is read, from the start-at row through
the end of data. Therefore you should only put data in the columns that you
want to be read. Extraneous data should be removed if you do not want it to
be read. Any blank cells within the read data range will be treated as NaN.

If the first row of your sheet is a header, you can select the First row is a
header option to have the SystemTest software exclude it from the data.

7 In the For Each Selected Sheet section, select the option to determine

2-48

how the data is arranged when the vector is created. You can have each
row (or column) of the spreadsheet be a separate test vector value, or you
can have the entire sheet be one test vector value.

Creating Spreadsheet Data Test Vectors

General Skring Replacementl Gru:uupingl
~[Data Range
Drata is arranged by I column ;I

Read data Fram calurmn |.ﬁ. ko IC skarting at row |3

[+ First row is a header

~Far Each Selected Sheet:

{* Treat each row as a test vector value

A B [A B c
| Data |
[1 1]
Ex: or | 2 4 4 |
[3 g]
B | |
Simulink Parameter MATLAE Yector

{~ Treat sach selected shest as a kest vector value

Ex:

Simulink Signals MATLAB Matrix

See “Configuring the Spreadsheet Data Test Vector” on page 2-50 for more
information about these two options.

8 You can optionally replace strings in the file with values using the String
Replacement tab. The table is automatically populated with any strings
contained in your sheet(s). If you want to replace each occurrence of a
particular string with a value, type the value in the Value column of the

2-49

2 Working with Test Vectors

2-50

table. Then when the test vector is evaluated, that string will be replaced
with the value you indicated to populate the test vector.

See “Replacing Strings” on page 2-53 for more information about this option.

9 Click OK in the Insert Test Vector dialog box. The new vector then appears
in the Test Vectors pane.

After creating a Spreadsheet Data test vector, you can edit it any time by
selecting it in the table in the Test Vectors tab. If you make any changes to
the configuration of the test vector in the SystemTest software, they will be
applied immediately. If you make any changes to the underlying spreadsheet,
you can have the data reread by clicking the Evaluate button above the

test vectors table.

For a detailed example using the Spreadsheet Data test vector, see “Example:
Overriding Simulink Inport Blocks Using a Spreadsheet Data Test Vector”
on page 4-28.

Note If the data in your spreadsheet is numeric, it will be a double array in
the test vector. If the data contains any strings, it will be a cell array. If the
data contains header information and you specified the first row as a header,
that will be excluded, and if the remaining data is numeric, it’s treated as a

double array.

Configuring the Spreadsheet Data Test Vector

As shown in step 7 in “Creating a Spreadsheet Data Test Vector” on page
2-46, you can configure test vector values using the Data Selection tab when
you create or edit a Spreadsheet Data test vector.

In the For Each Selected Sheet section, you select the option to determine
how the vector is created. You can have each row (or column) of the
spreadsheet be a separate test vector value, or you can have the entire sheet
be one test vector value.

Creating Spreadsheet Data Test Vectors

Far Each Selected Sheet:

Treat each row as a test vector value

The Treat each row as a test vector value option means that each row
or column (depending on what you selected in the Data is arranged by
option) is one test vector value.

% Treat each row as a test veckor value

Ex:

A c A B c
| Data |
[1 2 1]
or (L2 4 4 |
[6 9 |
[] | |
Simulink Parameter MATLAE Yector

In the first case shown here, column A contains values for the parameter
Gain. Suppose this column contains 10 values, in rows 2 through 11 (row 1 is
a header). The resulting test vector would be a 1-by-10 array containing 10
values. The first value is 1, the second value is 1.1, etc. The ten populated
rows result in a total of ten values, each row being one scalar value.

The same is true of the second example shown — that each row is a separate
value, except that in this case each value is an array, instead of a single
scalar. The first test vector value in this case is the array [1 2 1]. The
second test vector value is [2 4 4], etc. If this sheet also had ten rows, there
would be ten separate values (each an array of 3 numbers) and the test
vector length would be 10.

2-51

2 Working with Test Vectors

Treat each selected sheet as a test vector value

The Treat each selected sheet as a test vector value option means that
each entire sheet is one test vector value.

{~ Treat each selecked sheet as a kest veckor value

A B C M A B C M
L @
1 0 1 i 6 1
2 1 0 3 ¥ 5
Ex: 3] 1 or 4 i 9
[I
[[
Simulink Signals MATLAB Matrix

If the sheet contains multiple rows and columns, the resulting test vector
value is a matrix. In the first example shown here, labeled Simulink Signals,
this spreadsheet file contains 3 sheets. Suppose each sheet contained the
three columns shown, t, u1l, and u2, and had just the three rows of values
shown. The resulting test vector would be of length 3 since each sheet is
one test vector value and there are three sheets, and each of the three test
vector values would be a 3-by-3 matrix.

Suppose the second example, labeled MATLAB Matrix, contained five sheets
and each sheet had the three columns shown, each with ten rows of data. The
resulting test vector would be of length 5 since each sheet is one test vector
value and there are five sheets, and the five test vector values would each be a
10-by-3 matrix, since the sheets have ten rows of data and three columns.

Configuring each sheet to be one test vector value can be useful in a case
where you have a test case in each sheet, and each test case is a matrix.

2-52

Creating Spreadsheet Data Test Vectors

Using Multiple Sheets

If you configure a test vector to use multiple sheets in a file, and you use the
Treat each row as a test vector value option, each sheet is read, turned
into individual rows, and then appended together. For example, if your file
has three sheets containing three, four, and five rows of data respectively, the
resulting test vector is a set of row vectors as follows:

row 1 from sheet 1
row 2 from sheet 1
row 3 from sheet 1
row 1 from sheet 2
row 2 from sheet 2
row 3 from sheet 2
row 4 from sheet 2
row 1 from sheet 3
row 2 from sheet 3
row 3 from sheet 3
row 4 from sheet 3
row 5 from sheet 3

If you configure a test vector to use multiple sheets in a file, and you use the
Treat each selected sheet as a test vector value option, the resulting test
vector will have the same number of values as there are sheets in the file. The
same file with three sheets would have three values:

sheet 1
sheet 2
sheet 3

Replacing Strings

As shown in step 8 in “Creating a Spreadsheet Data Test Vector” on page 2-46,
you can optionally replace strings in the data you read from your spreadsheet
files with values using the String Replacement tab when you create or edit
a Spreadsheet Data test vector. The table lists any strings contained in your
sheet(s), excluding headers if you've specified they are present.

If you want to replace each occurrence of a particular string with a value, type

the value in the Value column of the table. Then when the test is run, that
string will be replaced with the value you indicated to create the test vector.

2-53

2 Working with Test Vectors

An example use case for this feature is that you could have a spreadsheet that
contains values for switches, and the values are designated by the strings

ON and OFF.
A | B | C |
1 | Switch A Switch B Switch C
2 |OFF]| QOFF
3 |OFF]| QOFF
4 |0 OFF OFF
g

In this example, you might want to replace each instance of ON with a 1 and
each instance of OFF with a 0. The String Replacement tab of the Insert
Test Vector dialog box would look like the following:

) Insert Test Vector

Select Test Veckor type: General | Data Selection String Replacement | Grouping |
MATLAE Expression Replace strings found in the read data with a scalar numerical, scalar logical, or string value,
Probability Distribution
Signal Builder Black String I Value I
Simulink: Design Verifier Data File OFF 0 LI
Spreadsheet Data

ON 1 =

If you want to map the same strings to different values, you have to create
separate test vectors and do each replacement mapping separately. For
example, in the previous case, you might want the values for Switch A to map
to 1 and 0 as shown, but for Switch B you might want to use 100 and 0. In
this case, create a test vector that reads only column A and replace ON and

OFF with 1 and 0, and then create a second test vector for column B that
maps Switch B values to 100 and 0.

2-54

Creating Simulink Design Verifier Data File Test Vectors

Creating Simulink Design Verifier Data File Test Vectors

In this section...

“Prerequisites” on page 2-55

“Automatically Creating a SystemTest Test Harness from Simulink® Design
Verifier” on page 2-55

“Creating a Simulink Design Verifier Data File Test Vector” on page 2-57

“Important Usage Notes” on page 2-67

Prerequisites

The Simulink Design Verifier Data File test vector can read test cases created
by the Simulink® Design Verifier™ software. In order to use this test vector,
you need a Simulink Design Verifier data file with test cases.

To use this feature, you first run Simulink Design Verifier with the
appropriate configuration. Then you can do one of two things:

® Generate a SystemTest harness for the model from Simulink. When it
completes, a new test opens automatically in SystemTest and a Simulink
Design Verifier Data File test vector is automatically created. This
workflow is described in “Automatically Creating a SystemTest Test
Harness from Simulink® Design Verifier” on page 2-55.

¢ Ifyou already have a data file from Simulink Design Verifier, you can create
a test vector in SystemTest that uses the test cases in the data file, and
configure overrides in a Simulink element. This workflow is described in
“Creating a Simulink Design Verifier Data File Test Vector” on page 2-57.

Automatically Creating a SystemTest Test Harness
from Simulink Design Verifier

If you generate a SystemTest test harness from Simulink using Simulink
Design Verifier, a new test opens automatically in SystemTest with a
Simulink Design Verifier Data File test vector and a Simulink element
automatically created for you. The following steps outline this workflow.

1 From your model, select Tools > Design Verifier > Options.

2-55

2 Working with Test Vectors

2-56

Select:

- Solver
--Data Import/Export
- Optimization
[=]-Diagnostics
~Sample Time

Model Referencing
- Saving
-Hardware Implementation
--Model Referendng
[=]-Simulation Target
~Symbols

- Custom Code
[=]-Real-Time Workshop
- Report

- Comments

- Symbols

- Custom Code

- Debug

- Interface
[=1-Design Verifier

- Block Replacements
- Parameters

- Test Generation

- Property Proving
- Results

- Report

2 In the Configuration Parameters dialog box, select Design Verifier
> Results, and then enable the Save test harness as SystemTest
TEST-file option.

#, Configuration Parameters: sldvdemo_cruise_control/Configuration (Active)

—Uata ne opoons

¥ Save test data to file

Data file name: I SModelNames_sldvdata
[Indude expected output values

[~ Randomize data that do not affect the outcome

—Harnesz model options

[save test harness as model

Harness model file name:

I~ | Reference input mode! in generated harmess

—SystemTest options

[V Save test harness as SystemTest TEST-file (will reference saved data file)

SystemTest file name: sModelNames_harness

oK I Help Apply

Cancel

LE

3 Click OK.

4 In Simulink, save the model.

5 From your model, select Tools > Design Verifier > Generate Tests to

run the model and generate the SystemTest test harness.

After the model generates test cases, the SystemTest software opens

automatically. A Simulink Design Verifier Data File test vector containing

Creating Simulink Design Verifier Data File Test Vectors

the generated test inputs is automatically created. A Simulink element
is also created, configured with the model name, override mappings set,

and model coverage enabled.

6 Optionally, in the SystemTest software, you can add other things to the
test, such as a plot element. For an example of this, see “Creating a
Simulink Design Verifier Data File Test Vector” on page 2-57.

7 Run the test in the SystemTest software by clicking the Run button.

Creating a Simulink Design Verifier Data File Test
Vector

If you already have a data file from Simulink Design Verifier, you can create a
test vector in the SystemTest software that uses the generated rest cases in
the data file, and configure overrides in a Simulink element. The following

steps outline this workflow.

1 In the Test Vectors pane, click the New button.

2 In the Insert Test Vector dialog box, select Simulink Design Verifier
Data File as the test vector type.

2-57

2 Working with Test Vectors

) Insert Test Vector

Select Test Vector type:

MATLAE Expression
MAT-File

Probability Distribution
Signal Builder Block

Simulink Design Verifier Data File
Spreadsheet Data

Test Case Data

General | petails | Grouping |

Mame:

Type: ISimuIink Design Verifier Data File

rTest Cases

Data File: |

| Browse... |

Test Case Name

Unable to evaluate Test Vector, Configuration may be incomplete or in error,

oK

Cancel |

3 Accept the default test vector name, or type a new one in the Name field.

4 Type the name of the Simulink Design Verifier data file in the Type field,

2-58

or use the Browse button to locate it. It will be a .mat file.

Note that you must use a valid MAT-file — a Simulink Design Verifier data
file created in version R2008b or later. If you try to use a data file created
in an earlier version of the software or a MAT-file that is not generated

from Simulink Design Verifier, you will get an error.

Creating Simulink Design Verifier Data File Test Vectors

) Insert Test Vector

Select Test Vector type:

MATLAE Expression

MAT-File

Probability Distribution

Signal Builder Block
sign Verifier Data File

Spreadsheet Data

Test Case Data

5 When the data file is read in, the test cases appear in the Test Cases Name
table. Click any test case to see its test case description below the table.

X

General | petails | Grouping |

Mame: ITestll'echr 1

Type: |Simulink Design Verifier Data File

Test Cases

Data Fila: |C: \MATLABsldvdemo_cruise_control_sldvdata.mat

| Test Case Name £ ’

Test Case 2
Test Case 3
Test Case 4
Test Case 5
Test Case &
Test Case 7
Test Case 8
Test Case 9

se 1 (8 Objectives) ﬂ

Parameter values:

1. Controller /PI Controller - enable logical value F @ T=0.00
7 Contraller Switrh i - lanical trinaer innot troe faotnot iz fram st innot nect) & T=0 00 I _lj
»

Kl

Test Vector successfully evaluated to a 1x9 struct

OK. | Cancel |

6 To see information from the Simulink Design Verifier data file, click the

Details tab. This provides analysis information on the data file, and the
model Inport blocks associated with the test cases. If the test cases involve
any model parameter configurations, they appear in the Parameters
section. This section will list any parameters that are used as part of a test
case. The information in this tab is not editable.

2-59

2 Working with Test Vectors

) Insert Test Vector x|

Select Test Vector type:

General Details IGmupingl

MATLAB Expression r-Analysis Information

MAT-File MaxProcessTime: a0

Probability Distribution Maode: ‘TestGeneration'
gnI Builder Blck - . sampleTimes: 0.01

_1|r||uI|k.u::;|gr| Verifier Data File Status: ‘Completed normally’
Spreadsheet Data TestSuiteOptimization: ‘CombinedObjectives’
Test Case Data

rInput Port Information

Inport Block Name

boolean
set boolean
inc boolean
dec boolean
speed double

~Parameters

Parameters in all the test cases:

OK | Cancel

7 Click the OK button to finish creating the new test vector. It then appears
in the Test Vectors pane in the SystemTest desktop.

Now that the test vector is created, you can create mappings in a Simulink
element.

8 Create a Simulink element by clicking the Main Test node in the Test
Browser, and clicking the New button. Select Test Element > Simulink.

2-60

Creating Simulink Design Verifier Data File Test Vectors

9 Type the name of the model, or use the Browse button to locate it. This
should be the same model that was used to create the Simulink Design
Verifier data file.

If you browsed for the file, when you click OK, the model opens.

10 In the Override Inport Block Signals with SystemTest Data section
of the Simulink element, select the All Inport blocks are mapped using
option. You must select this option in order to correctly use the Simulink
Design Verifier data file.

11 From the drop-down list, select the test vector you created earlier in this
workflow.

2-61

2 Working with Test Vectors

Properties LW Test Vectors Test Variables

|»

Simulink madel

C:\MATLAB\sldvdemo_cruise_contral. mdl
Isldvdemn_cruise_control LI El Browse. .. |
Mappings I Maodel Caverage |

Dverride Inport Block Signals with SystemTest Data (all)

The model contains & Inport block{s).

" Do not override Inport black signals. (Use Inport signals defined by the model)

+ All Inpart blocks are mappad using:

" Individual Inport blocks are mapped using:

Inport Block Name SystemTest Data I

enable Inherit from maodel LI -
brake Inherit from maodel LI
sek Inherit from maodel LI

nc Inherit from maodel LI LI

Define test signal Hme;

{* IMap test signal time bo; I j

= Manually specify & time step: I-Zl.-le

Tio caleulate end tme of simulation:

{+ se mode! stop Eme

= Use signal's end time

“

Dverride Block Parameters with SystemTest Data

“

Override MATLAB and Model Workspace Variables with SystemTest Data

“

Run Signal Builder test cases from SystemTest

“

Assign Model Outputs to SystemTest Data

In the example shown here, the model name is
sldvdemo_cruise_control.mdl and the vector is TestVectori.

2-62

Creating Simulink Design Verifier Data File Test Vectors

12 If you have the Simulink® Verification and Validation™ software and you
want to use the Model Coverage feature in the Simulink element, click
the Model Coverage tab.

13 Select the Enable Model Coverage check box.
14 Select Override model coverage metric settings.

15 Select any metrics you want to cover in the Coverage Metrics section.

2-63

2 Working with Test Vectors

Properties LI Test Vectors | Test variables

Simulink madel
Ci\MATLAB\sldvdemo_cruise_contral mdl

I sldvdemo_cruise_control

Mappings Model Coverage
¥ Enable model coverage
™ Inherit coverage metric setkings From the madel

{* Override model coverage metric settings

LI Sl Browse. .. |

~Overridden Coverage Metrics

[¥ Caverage for this model: Caverage For this model: sldvdema_cruise_contral

/
Select Subsystem. .. |

[~ Caverage for referenced models
All referenced models are included

Select Models. ..

Coverage Metrics

¥ Decision Coverage

¥ MCDC Coverage [+ Look-up Table Coverage

[+ Signal Range Coverage

~Map Coverage Daka to Test Variables

t & x|

Mew Mapping -

Coverage Path I Metric

SystemTest Data

=)

=l

16 Optionally, if you want to plot any of the signals, create a plot element.

2-64

Creating Simulink Design Verifier Data File Test Vectors

Select the Simulink element you already created in the Test Browser, and
select New > Test Element > Plot — General.

17 In the Plot element, click the Add Plot button.
18 Select Simulink Data.

19 From the Simulink Data field, expand the test vector that you created to
see the individual signals.

2-65

2 Working with Test Vectors

Properties [8 Test Vectors | Test Variables

Genaral I Optians |

‘ Add Axes | Add Plat +

¥ Delete |

E-Figure

~Properties

Plok Type: n] Simulink: data -

Simulink: Data:

F
-«Tkeration Mumber =
Line calor: ~=Mew Tast Vectar . =
* bezMew Test Variable ...
- TestVackari -

|
A

2-66

Creating Simulink Design Verifier Data File Test Vectors

20 Select one of the signals, for example, speed.
21 Run the test by clicking the Run button on the SystemTest toolbar.

In this example, after the test runs, a model coverage report and a plot
of the speed signal are generated.

Important Usage Notes

The following notes pertain to the integration between the SystemTest
software and Simulink Design Verifier using the Simulink Design Verifier
Data File test vector:

e Model Coverage Report — The model coverage report generated by
the model harness using Simulink Verification and Validation and that
of the SystemTest harness generated by Simulink Design Verifier will
be identical.

¢ Data Format — The format of the data from a Simulink Design Verifier
Data File test vector, if seen in a MATLAB element or in saved test results
for example, is a subset of the Simulink Design Verifier data format.

It is a MATLAB structure with one field, TestCases. Then the TestCases
field contains two fields, dataValues and paramValues. TestCases is a
1x1 structure. The following figure shows the data format for a Simulink
Design Verifier Data File test vector called TestVectori:

FE»»> TestVectorl
TestVectorl =

TestCases: [1x1l struct]
Fr> TestVectorl.TestCases
ans =

dataValues: {&xl1l cell}
paramvValuss: []

2-67

2 Working with Test Vectors

2-68

Data file Version — To use the Simulink Design Verifier Data File test
vector, you must use a Simulink Design Verifier data file created in version
R2008b or later. If you try to use a data file created in an earlier version
of the software or a MAT-file that is not generated from Simulink Design
Verifier, you will get an error.

Evaluating the Test Vector — If you make changes in the underlying
Simulink Design Verifier test cases, you can click the Evaluate button
in the Test Vectors pane any time to see the changes reflected in the
SystemTest user interface. However this is not necessary to pick up
the changes for running the test. When you run a test containing a
Simulink Design Verifier Data File test vector, the SystemTest software
automatically queries the data file for the latest information in the test
cases.

Changing the Underlying Model — If you make changes in the
underlying Simulink model, such as changes to Inport blocks, you should
return to Simulink Design Verifier and regenerate the test cases and the
test harness. Then return to SystemTest test harness to continue working
with your test.

Model End Time — In the use case where you automatically generate
the SystemTest test harness from Simulink Design Verifier, the end time
used will be that of the test cases per iteration. However, in the use case
where you create the test vector in SystemTest using a Simulink Design
Verifier data file that you already have, the underlying model’s end time
will be used per iteration.

Bus Support — The Simulink Design Verifier Data File test vector
supports the use of busses in Inport blocks. Bus support is only available in
SystemTest through this feature.

Creating Signal Builder Block Test Vectors

Creating Signal Builder Block Test Vectors

If you have created a Simulink model test harness using a Signal Builder
block, you can automate the running of all your test cases by integrating them
into a SystemTest test. This also offers the ability to collect cumulative model
coverage metrics for all your Signal Builder test cases.

The most common workflow for this feature is to create a Simulink element
and then create the test vector from within the element, as follows:

1 In the SystemTest desktop, create a Simulink element by clicking the
Main Test node in the Test Browser, and clicking the New button. Select
Test Element > Simulink.

2 Type the name of the model, or use the Browse button to locate it. This
should be the model that includes the Signal Builder block whose test cases
you are interested in.

When you click OK, the model opens.
This example uses the model systemtestsfcar.

3 In the Simulink element, click the up arrows in the banner of the Override
Inport Block Signals with SystemTest Data section to close it.

4 Click the down arrows in the banner of the Run Signal Builder test
cases from SystemTest section to expand it.

5 Enable the Signal Builder test cases by selecting the Use test vector
check box.

2-69

2 Working with Test Vectors

6 Click the down arrow and select <New Signal Builder Block test
vector...>.

Properties LI Test Vectors Test Variables

Simulink model
C\MATLAB systemtestsfcar, mdl

I systemtestsfcar LI Sl Browse. .. |

Mappings | Maodel Coverage |

%

Owverride Inport Block Signals with SystemTest Data

<

Override Block Parameters with SystemTest Data

Override MATLAB and Model Workspace Variables with SystemTest Data

<

-'.;",'" Run Signal Builder test cases from SystemTest

[+ Use test vectar | i ! to run Signal Builder test cases,

<MNew Signal Builder Black Test Vector... >
Assign Model Outputs to SystemTest Data ¥

7 The Insert Test Vector dialog box opens and Signal Builder Block is
the selected test vector type.

Keep the default test vector name or type a new one.

8 On the General tab, type the name of the model you used in the Simulink
element, or click the Browse button to locate it.

2-70

Creating Signal Builder Block Test Vectors

Note You cannot use a Signal Builder Block test vector with a Simulink
element that uses a different model. You must refer to the same model in
both the test vector and the Simulink element.

2-71

2 Working with Test Vectors

9 When the model is found, the Signal Builder test cases appear in the Test
Cases section.

J Insert Test Vector I

Select Test Vector bype: General I Test Signalsl Groupingl

MATLAB Expression
Probability Distribukion [erwzs ITESL‘I“IE':':D"1
Signal Builder Blodk: = -
= . Type: Signal Builder Block:
Simulink Design Verifier Data Filz ot I g -
Spreadshest Data
~Test Cases
Simulink Model: Isystemtestsfcar.mdl I Open Model... |

Ci\MATLAB\systembestsfcar. mdl

Signal Builder Block: I syskemtestsfear(User Inputs :I
I Test Cases
¥ Passing Maneuver
=2 Gradual Acceleration
¥ Hard braking
¥ Caasting

Test Vector successfully evaluated to a 1x4 cell array

oK | Cancel

If there are any test cases you do not want to test, you can disable them
using the check boxes. Test cases that are checked will be tested.

10 You can click the Test Signals tab to view the test signals associated with
your Signal Builder block.

2-72

Creating Signal Builder Block Test Vectors

11 Click OK to finish creating the test vector.

12 To view or edit the test vector after it is created, click the Test Vectors tab
in the SystemTest desktop.

13 Optionally create other elements, test vectors, variables, or saved results,
and run your test.

Note If you make changes in the underlying Signal Builder block in your
model, you can click the Evaluate button in the Test Vectors pane any
time to see the changes reflected in the user interface. However this is not
necessary to pick up the changes for running the test. When you run a test
containing a Signal Builder Block test vector, the SystemTest software
automatically queries the model for the latest information in the Signal
Builder block.

Note When you run the test, the Signal Builder test cases are run in the
order in which they appear in the Signal Builder block in your model. This
same order is reflected in the Test Vectors pane in the SystemTest software,
unless you change the order in the table by sorting the columns.

2-73

2 Working with Test Vectors

2-74

Note You may have tested a Signal Builder block in previous SystemTest
versions by using the Override Block Parameters with SystemTest Data
section of a Simulink element. In that scenario you would create a new
mapping to the Signal Builder block.

However, using the Run Signal Builder test cases from SystemTest
section in the Simulink element and creating the Signal Builder Block test
vector 1s a better and easier solution. Because the Signal Builder test cases are
in a test vector, you can do more with them, such as plotting. Also, the signals
are stored in the SystemTest results set, rather than the index of the test case.

Note that if you have a Simulink element that contains the mappings from
the former way of including a Signal Builder block, and then you use the new
Signal Builder Block test vector and use the new section in the same Simulink
element, the test will use the new information in the Run Signal Builder
test cases from SystemTest section in the Simulink element.

Creating a Test Case Data Test Vector

Creating a Test Case Data Test Vector

J Insert Test Vector

You can create signals in the SystemTest software and use them to test a
Simulink model. The Test Case Editor provides a graphical way of creating,

editing, and visualizing signal data in SystemTest.

The Test Case Editor is accessed through the Test Case Data test vector in
the SystemTest software. For more information on creating test cases and
authoring signals in the Test Case Editor, see Chapter 5, “Authoring Signals

in the Test Case Editor”.

To create a Test Case Data test vector:

1 On the Test Vectors pane of SystemTest software, click the New button.

2 In the Insert New Test Vector dialog box, select Test Case Data as the

test vector type.

Select Test Vector type: General I = I
MATLAE Expression
MAT-File Name: ITestu'ector 1|
Probability Distribution

Type: Test Case Data
Signal Builder Block nEs I sehesenEE
Simulink Design Verifier Data File
Spreadshest Data rTest Cases

Open Test Case Editor...

Test Cases

3 Assign a name to the vector in the Name field.

4 Click OK in the Insert Test Vector dialog box.

2-75

2 Working with Test Vectors

2-76

The new vector appears in the Test Vectors pane.

5 On the Test Vectors pane, select the test vector you just created, and click
the Open Test Case Editor button to create the test cases and signals, as
described in “Workflow of Authoring and Using Signals” on page 5-4.

Properties | Test Vectors [4 Test Variables |
Mew... | x | Evaluate
Mame Length Group Mame Type

MName:

Type:

General I Grouping |

Test Cases

Open Test Case Editor... | /

ITesth'Eu:b:url

ITest Case Data

Test Cases

Creating a Test Case Data Test Vector

6 Alternatively, you can click the Open Test Case Editor button after step
3, while creating the test vector. If you do that, click the OK in the Insert
Test Vector dialog box once you return to the SystemTest desktop.

Whether you create the test cases and signals during creation of the test

vector, or after you have created it, see “Working in the Test Case Editor” on
page 5-9 for information on creating and editing the test cases and signals.

2-77

2 Working with Test Vectors

2-78

Using a MATLAB Element to Access Test Case Data Test
Vector Information

You can access the data from a Test Case Data test vector by using a MATLAB
element in a test that has a Test Case Data test vector. You could use the
data for a variety of reasons, such as writing it to a CSV file, calling a custom
function, or creating a plot.

If you have a Test Case Data test vector called TestVector1 with a signal

called Signal1, and use a custom analysis function in your test, the following

are examples of code you could use in a MATLAB element to access the

signal’s data for your function.

Get a cell array of signal names stored in the Test Case Data test vector.
signalNames = getValue(TestVectortl);

Get the timeseries object.

Signali1Timeseries = getValue(TestVectori, 'Signall');

Get the Time and Data out.

time = SignaliTimeseries.Time;
data SignaliTimeseries.Data;

Call your custom function.

myCustomAnalysisFunction(time, data)

Editing a Test Vector from within an Element

Editing a Test Vector from within an Element

If you want to edit a test vector while working within an element, you can
open the editor by right-clicking on the name of the test vector in the table(s)
on the Properties tab of some of the elements. This feature is included in
the following elements:

e Limit Check — General Check

e Limit Check — Tolerance Check

e Simulink

® General Plot

2-79

2 Working with Test Vectors

2-80

Working with the Basic
Elements

¢ “Working with the Sections of a Test” on page 3-2
e “Basic Elements” on page 3-5

¢ “Deprecated Elements” on page 3-29

3 Working with the Basic Elements

3-2

Working with the Sections of a Test

In this section...

“Overview” on page 3-2
“Pre Test” on page 3-2
“Main Test” on page 3-3

“Post Test” on page 3-3

Overview

Each section of the test serves a different purpose and has different properties
that can be set in the Properties pane. Click a part of the test or an element
in the Test Browser to see the properties for that section or element.

The descriptions of the elements in this chapter include a list of which sections
of the test you can use each element in. The following sections describe the
sections of a test. They are followed by a description of how to use the basic
elements.

Pre Test
The Pre Test runs once prior to any number of iterations through Main Test.

Pre Test can be used to perform general test setup such as:

® Opening a model.

¢ Initializing variables.

® Accessing system resources, such as opening a file.

¢ Initializing external test equipment.

In Pre Test, only test variables defined as a Pre Test variable may be modified

or assigned to. Pre Test variables are initialized during Pre Test and persist
throughout the Main Test and Post Test.

In Pre Test you can add the following element types: Simulink, MATLAB,
Subsection, Stop, IF, Video Input, the three Instrument Control Toolbox
elements, and the four Data Acquisition Toolbox elements.

Working with the Sections of a Test

With Pre Test you can initialize Pre Test variables and run elements that you
only want to run once before any Main Test iterations. For example, you can:

® Add a Simulink element to run a model and assign baseline data to a Pre
Test variable.

® Add a MATLAB element to load a MAT-file or perform some other test
setup.

® (Create conditions with the IF element and follow up with a Subsection
element to define what to do when those conditions are met.

Main Test

The Main Test is run one or more times based on the number of iterations.
It 1s used to:

® Execute elements multiple times in order to perform batch testing or sweep
through a parameter space.
® Perform batch testing or parameter sweeps that require multiple

independent iterations using different test conditions for each iteration.

The number of iterations is defined by the number and length of test vectors
you specify. The SystemTest software executes Main Test once for each
permutation of values in the test vectors specified.

In Main Test you can add all of the element types.

Post Test

The Post test runs once after all Main Test iterations have executed or when
a run-time error occurs in Pre Test or Main Test. Post Test can be used to
perform test cleanup, such as:

® (Closing a model.

e (Cleaning up your workspace.

® Releasing system resources, such as closing a file.

® Returning external test equipment to a safe state.

3-3

3 Working with the Basic Elements

In Post Test you can add the following element types: MATLAB, Subsection,
IF, Video Input, the three Instrument Control Toolbox elements, and the four
Data Acquisition Toolbox elements.

3-4

Basic Elements

Basic Elements

In this section...

“Introduction” on page 3-5

“MATLAB Element” on page 3-6

“Limit Check Element — General Check” on page 3-7
“Limit Check Element — Tolerance Check” on page 3-11
“IF Element” on page 3-14

“General Plot Element” on page 3-15

“Vector Plot Element” on page 3-20

“Scalar Plot Element” on page 3-23

“Stop Element” on page 3-26

“Subsection Element” on page 3-27

Introduction
The sections listed above describe how to work with the basic elements.

The Simulink element is covered in detail in Chapter 4, “Using the Simulink
Element”. The hardware elements are covered in detail in “Introduction” on
page 9-2 in Using the Image Acquisition Toolbox Element, “Introduction” on

page 8-2 in Using the Data Acquisition Toolbox Elements, and “Introduction”

on page 7-2 in Using the Instrument Control Toolbox Elements.

To see the MATLAB, Limit Check, and General Plot elements used in an
example, see “Adding Elements” on page 1-21.

Tip You can rename any element or subsection by double-clicking its name
in the Test Browser.

3 Working with the Basic Elements

3-6

Invalid Characters in Element Names
The following characters are invalid to include within element names:

You cannot use these three characters in element names. If you create a new
test element with one or more of these characters in the element name, then
the SystemTest software throws an error dialog and the element name is
reset to the default value, which is the name of the element type.

If you try to load an existing test with an invalid element name (containing
one or more of the three characters listed above), the SystemTest software
displays an error dialog indicating that the element name is invalid. The test
will load successfully, but the element with an invalid name is reset to use the
default name for the element. If this occurs, simply rename the element to a
name that does not contain any of the invalid characters.

MATLAB Element

The MATLAB element lets you run MATLAB scripts from within a test.
In addition to specifying any valid MATLAB script to execute, you can

incorporate any test variable into your code, as well as access any variables
residing in the MATLAB workspace.

Allowed Test Sections

The MATLAB element can be used in the following test sections:
® Pre Test

e Main Test

® Post Test

Basic Elements

Test Browser

| Test Yariables

MATLAE Scripk

n Test

| MaTLAR
\..Gave Results

----- Post Test

Test ¥Yectors

[Test variables

=t Mai

% MATLAE Element

Executes MATLAE code during Pre Test, Main Test, or Fost Test.
B

% MATLAE wariashles declared here can be accessed throughout

% @ test by creating SystemTest test varisbles as follows:

% 1)
% 21

SJelect the Insert menu option "Test Varishle..."™
Configure the nswe to match the MATLAE wvariable's name

0 =1 v s L

Properties Pane
In the MATLAB Script edit field, enter any valid MATLAB script.

Limit Check Element — General Check

The General Check tab of the Limit Check element determines test
conditions are met by using scalar, vector, or matrix comparisons. It can be
used to:

e Compare measured data to expected data.

® Stop an iteration or an entire test if a test constraint is violated.

® Assign a test variable the logical value derived from the comparison(s)

for use by other elements.

You can do the following types of comparisons with the General Check tab
of the Limit Check element:

e Scalar versus scalar

e Scalar versus vector

® Vector versus vector

e Matrix versus matrix

3-7

3 Working with the Basic Elements

Note Use the Tolerance Check tab of the Limit Check element to test
absolute and relative tolerance.

Allowed Test Sections
The Limit Check element can be used in the following test section:

e Main Test

3-8

Basic Elements

Test Browser

E 4 Properties

| Mew -

t 3| x|

[=-Untitled

- ‘Pre Test
[=]-Main Test

Limit Check,
‘Save Results
‘Post Test

----- [, Test ¥Yectors

----- Ea Test Yariables

LI Test Yectors | Test variables

~Conditions

For this element ko pass;

I All rows must evaluate to true (logical AMD)

If this element Fails:

I Current iteration continues

Assign data to:

How to Use

1 Click the New button on the General Check tab to add a general limit

check.

® Select an existing test variable or create a new one in the Test Variable

column.

3-9

3 Working with the Basic Elements

3-10

® Select an operator in the Operator column.

e Select an existing test variable or test vector or create a new one in the
Limit column.

2 Set your test’s passing conditions.

¢ The element can pass if all comparisons complete successfully (a logical
AND).

¢ The element can pass if one or more of the comparisons complete
successfully (a logical OR).

3 Set your fallback procedure if the element fails. You can:
e Allow the current iteration to continue executing.
e Stop the current iteration and proceed to the next iteration.

® Stop the test and proceed to Post Test.

4 Identify the SystemTest test variable you want to assign the logical value
derived from the comparison(s) in the Assign data to field.

Note Aside from setting limit checks on individual elements, you can set
these properties for the entire test, reachable by clicking the test name in the
Test Browser, to determine pass/fail criteria for the test as a whole.

Properties Pane — General Check
You can set the following properties for the Limit Check element:

® Test Variable — Value to compare to limit using operator.
¢ Operator — Boolean operator used to compare test variable to limit.
¢ Limit — Value to compare to test variable using operator.

¢ For this element to pass — Choose between a logical AND (all
comparisons must pass) or a logical OR (at least one comparison needs to
pass) for the element to pass.

¢ If this element fails — Choose between continuing the test, stopping the
current iteration, or stopping the entire test.

Basic Elements

® Assign data to — Test variable assigned the logical value of this
evaluation. The logical value will be 1 if the element passes or 0 if the
element fails.

Limit Check Element — Tolerance Check
The Tolerance Check tab of the Limit Check element verifies test conditions

are met by using absolute and relative tolerance comparisons. It can be
used to:
e Compare measured data to expected data.

® Stop an iteration or an entire test if a test constraint is violated.

® Assign a test variable the logical value derived from the comparison(s)
for use by other elements.

¢ Define pass/fail criteria for an iteration.

You can do the following types of comparisons with the Tolerance Check tab
of the Limit Check element:

® Absolute tolerance

® Relative tolerance

For a definition of these tolerance types, see the Properties Pane section.

Note Use the General Check tab of the Limit Check element to test scalar,
vector, and matrix comparisons.

Allowed Test Sections
The Limit Check element can be used in the following test section:

e Main Test

3-11

3 Working with the Basic Elements

Test Browser A ox Properties [Test Yectors | Test variables
Hew - | % | N
| i ' ‘ X ~Conditions
[=-Untitled
- PreTest General Check | Tolerance Check,
‘Main Test | Mew ‘ + 3 ‘ X, |
Limit Check,
Save Results Test Variable I Expected Value I Tolerance Type Tolerance Limik

‘Post Test
Test ¥Yectors
----- Ha Test ¥ariables

For this element ko pass;

I All rows must evaluate to true (logical AMD) d

If this element Fails:

I Current iteration continues i I

Assign data to:

| =l

How to Use

1 Click the New button on the Tolerance Check tab to add a tolerance
limit check.

¢ Select an existing test variable or create a new one in the Test Variable
column.

3-12

Basic Elements

® Select an existing test variable or test vector or create a new one in the
Expected Value column.

® Select Absolute or Relative in the Tolerance Type column.

® Select an existing test variable or test vector or create a new one in the
Tolerance Limit column.

2 Set your test’s passing conditions.

¢ The element can pass if all comparisons complete successfully (a logical
AND).

¢ The element can pass if one or more of the comparisons complete
successfully (a logical OR).

3 Set your fallback procedure if the element fails. You can:
e Allow the current iteration to continue executing.
e Stop the current iteration and proceed to the next iteration.

® Stop the test and proceed to Post Test.

4 Identify the SystemTest test variable you want to assign the logical value
derived from the comparison(s) in the Assign data to field.

Note Aside from setting limit checks on individual elements, you can set
these properties for the entire test, reachable by clicking the test name in the
Test Browser, to determine pass/fail criteria for the test as a whole.

Properties Pane — Tolerance Check
You can set the following properties for the Limit Check element.

¢ Test Variable — Variable to compare with expected value using a
tolerance limit.

e Expected Value — Expected value to compare variable to using a
tolerance limit.

* Tolerance Type — Tolerance type used to compare test variable to the
expected value. Select Absolute or Relative. Absolute tolerance is

3-13

3 Working with the Basic Elements

3-14

calculated using this formula: abs(test variable - expected value)
<= tolerance limit. Relative tolerance is calculated using this formula:
abs(test variable - expected value) <= tolerance limit.*
abs(expected value).

® Tolerance Limit — Value used as the tolerance constraint to compare
variable and expected value.

¢ For this element to pass — Choose between a logical AND (all
comparisons must pass) or a logical OR (at least one comparison needs to
pass) for the element to pass.

e If this element fails — Choose between continuing the test, stopping the
current iteration, or stopping the entire test.

® Assign data to: — Test variable assigned the logical value of this
evaluation. The logical value will be 1 if the element passes or 0 if the
element fails.

IF Element
The IF element provides logical control of a test by evaluating a condition.

The IF element allows sub-elements to run only when the IF element’s
condition evaluates to true. After adding an IF element, you should add one
or more elements to perform a specific task.

Basic Elements

Allowed Test Sections
The IF element can be used in the following test sections:

® Pre Test

e Main Test

® Post Test

Teskt Browser

‘ Mew =

* 3| X|

[=-Untitled

----- Pre Test
[iﬂ---Main Test

i ,ﬁga IF

: " Gave Results
- Post Test

Teskt ¥Yectors
Eﬂ Test Yariables

-4 Test Yectors

| Test variables

Properties Pane
You can set the following property for the IF element.

¢ Condition — Enter a valid MATLAB expression that will evaluate to

true or false.

General Plot Element

The General Plot element is used to plot any type of data over multiple

iterations.

Use this element during the Main Test to generate plots of any test vectors or

test variables containing any type of data.

3-15

3 Working with the Basic Elements

3-16

Allowed Test Sections
The General Plot element can be used in the following test section:

e Main Test

Test Browser

| New ~

t 8| X|

[=-Untitled

§=----Pre Test

I_‘%]--Main Test

Plat - General
i -Save Results
E----Pust Test

Test Vectors

Ea Test Variables

Properties L Test Vectors | Test variables

General I Options |

| Add Axes ‘ Add Plot -

¥ Delete

~Properties

Figure name:

Basic Elements

General Tab
To add a plot:

1 Click the Add Plot button to create a plot.

2 From the drop-down list, select one of the following:
® plot — A standard line plot that uses a 2-D line graph with linear axes.

¢ Simulink data — Lets you plot data produced from a Simulink model.
The supported data types are such [time signal] array, a structure, a
structure with time, or a time series. Note that the element creates a
line for each signal in the Simulink data. If time is not present, the
signals are plotted against their indices.

You can also plot Simulink data provided by test vectors, such as the
Signal Builder Block test vector, the Simulink Design Verifier Data File
test vector, or the Spreadsheet Data test vector.

® bar — A standard bar plot that creates a bar graph.

® scatter — A standard scatter plot that creates a 2-D scatter graph
displaying markers at x- and y-coordinates.

® contour — A standard line plot that creates a 3-D contour graph
displaying isolines of a surface in a 3-D view.

* imagesc — An image plot with colormap scaling, which displays an
image and scales it to use the full colormap.

* surf — A standard surface plot that creates a 3-D surface plot that
displays a matrix as a surface.

* mesh — A standard surface plot that creates a 3-D mesh plot displaying
a matrix as a wireframe surface.

® More plots — Opens the Choose Plot Type dialog box, which lets you
choose any MATLAB plot. Select a plot type category in the Categories
list to display the plot types from the Plot Types list. Select an
individual plot type to read the Description.

3-17

3 Working with the Basic Elements

3-18

Add Axes Button

You can have multiple axes in a plot figure. To add an axes, click the Add
Axes button. Then click the Add Plot button to create the plot for that axes.
Each axes 1s added as a subplot to the parent figure.

You can set properties for each axes individually by selecting the axes and
then configuring properties in the Properties area. With the axes selected,
you can configure the X and Y labels and add a title and legend. With the plot
under the axes selected, you can configure the plot.

Properties

When the Figure node is selected or you have not yet added a plot, the Figure
name field is displayed. Optionally use this text field to name the plot.

When you select a plot type and it is added to the tree, the Properties section
displays the properties of that plot type. Fill in any parameters you want to
set. For more information on the parameters, see the help in the Choose Plot
Type dialog box when you select More Plots.

When you select an axes the axes properties are displayed. Use the X label
and Y label fields to enter names for the X and Y axes. Use the Title field to
enter a title for the plot. If you select the Include legend option, a legend
1s added to the plot. The legend is located in the least used space outside of
the plot.

You can set other options for the General Plot element by clicking the
Options tab.

Plotting Simulink Data

You can plot data produced from a Simulink model. The supported data types
are such [time signal] array, a structure, a structure with time, or a time
series. Note that the element creates a line for each signal in the Simulink
data. If time is not present, the signals are plotted against their indices.

You can also plot Simulink data provided by test vectors, such as the Signal
Builder Block test vector, the Simulink Design Verifier Data File test vector,
or the Spreadsheet Data test vector.

Basic Elements

The Simulink data types are plotted as follows:

® For an array, it is plotted against its indices.

® For a structure in the format generated by a Simulink Outport, its signal
values are plotted against its indices.

® For a structure with time in the format generated by a Simulink Outport,
its signal values are plotted against its time.

® For a structure with time in the format generated by the Signal Builder
Block test vector, its signal values are plotted against its time.

e For a Simulink.Timeseries object, the plot is determined by the plot()
function of the Simulink.Timeseries object.

Options Tab

These options control the test behavior pertaining to plots.

Properties LI Test Vectors | Test Variables

General Options

~Each time the element executes

% Clear the figure of any previous iteration's data

" Keep any existing data an the Figure

~IF this test is generating a repart

f* Put a snapshat of the figure inko the repart 2ach iter akion

 Put a snapshat of the figure inko the repart at the end of the test

= Do not put any snapshats inka the report

3-19

3 Working with the Basic Elements

3-20

The Each time the element executes option determines run-time behavior
of the element.

¢ (Clear the figure of any previous iteration’s data — Every time the
element executes, the figure is cleared before plotting new data. This is
the default.

¢ Keep any existing data on the figure — Previous plots are not removed
from the figure. New data is added to the same figure.

The If this test is generating a report option determines what happens to
the snapshots of the plots that are created when each iteration runs.

¢ Put a snapshot of the figure into the report each iteration — A
snapshot of the plot is generated in each iteration and is displayed in its
respective section of the report. This is the default.

¢ Put a snapshot of the figure into the report at the end of the test —
Only one snapshot of the plot is taken, at the end of the completed test run.
It 1s displayed in the report section for Post Test.

* Do not put any snapshots into the report — No snapshots of plots are
added to the report.

Vector Plot Element

Note: The Vector Plot and Scalar Plot elements are being replaced by the
General Plot element that was introduced in R2008b. The General Plot
element supports all MATLAB plot types as well as Simulink data. You
can no longer create new Vector Plot or Scalar Plot elements. For more
information, see the R2010a section of the SystemTest Release Notes.

Note Tests containing Scalar Plot or Vector Plot elements will not
automatically load with those elements. You will be prompted to convert them
to General Plot elements. For information on the conversion, see “Deprecated
Elements” on page 3-29.

The Vector Plot element is used to plot array or vector data over multiple
iterations.

Basic Elements

Use this element during the Main Test to generate plots of any test
variables containing array or vector data. You can change the number of
iterations displayed to as many as 16 (in a 4-by-4 matrix) using the Subplot
Dimensions fields. The default is one iteration.

3-21

3 Working with the Basic Elements

3-22

Test Browser

| Mew -

* & X|

[=-Untitled

= ----- Pre Test
Ifﬂ---Main Test

P ectar Plok
i-5aye Results
Post Test

Test Yectors

----- Ha Test ¥ariables

e Main Test

Properties

Allowed Test Sections
The Vector Plot element can be used in the following test section:

[Test Yectors

| Test variables

Flok Type
¥ s
I <none > LI
rLines ko Plot
[new | # & | X |
W A Line Color Line Style Line Marker
* | <aukox LI Solid LI Mo Marker LI

~Subplot Dimensions

Rows

f1

[

Zolurnns

1

[¥ Clear axes between iterations

Basic Elements

Plot Type
Choose one of the following plot types:

¢ plot — Standard plot of X and Y.

* semilogx — Semilogarithmic plot with logarithmic X-axis.
¢ semilogy — Semilogarithmic plot with logarithmic Y-axis.
¢ loglog — Log-log scale plot.

® stem — Lines extending from a baseline along the X-axis.

Properties Pane
You can set the following properties for the Vector Plot element.

¢ X Axis — Choose a test variable to use for an X-axis value.

® Y Axis — Choose a test variable to use for a Y-axis value.

® Line Color — Select a color to use for the line between each data point.
® Line Style — Set the type of line to be drawn between each data point.

¢ Line Marker — Choose a symbol to represent each data point.
Subplot Dimensions

¢ Rows — The number of rows you want displayed in the Subplots window.

¢ Columns — The number of columns you want displayed in the Subplots
window.

® (Clear axes between iterations — Applies only when you have one row
and one column to display. Selecting this option (default) rewrites the
plot with new data during each iteration. Clearing this option adds new
data to the plot during each iteration.

Scalar Plot Element

Note: The Scalar Plot and Vector Plot elements are being replaced by the
General Plot element that was introduced in R2008b. The General Plot
element supports all MATLAB plot types as well as Simulink data. You

3-23

3 Working with the Basic Elements

3-24

can no longer create new Scalar Plot or Vector Plot elements. For more
information, see the R2010a section of the SystemTest Release Notes.

Note Tests containing Scalar Plot or Vector Plot elements will not
automatically load with those elements. You will be prompted to convert them
to General Plot elements. For information on the conversion, see “Deprecated
Elements” on page 3-29.

The Scalar Plot element is used to plot scalar data for each iteration.

Use this element during the Main Test to generate a plot of one or more
scalar test variables.

Allowed Test Sections
The Scalar Plot element can be used in the following test section:

e Main Test

Basic Elements

Test Browser

A X Properties

L Test Yectors

| Test Yariables

| New - ’ ‘ | X | Flok Type
[=]-Untitled
%-----Pre Test 7’_\/\/ plat -
E---Main Test
{ > ----- @ Scalar Plok
: ‘...Gave Results # fixis
.. Post Test | Tteration Murnber LI
-] Test vectors Mazximurn Nurmber of Points to Display at Once
~—HH Test variables II :
n
~Lines ko Plok
[hew | # & | X |
Y Bxis Line Calar Line Style Lirne Marker
* | <autox LI Solid ll Mo Marker LI
Plot Type

Choose one of the following plot types:

¢ plot — Standard plot of X and Y.

* semilogx — Semilogarithmic plot with logarithmic X-axis.

* semilogy — Semilogarithmic plot with logarithmic Y-axis.

* loglog — Log-log scale plot.

® stem — Lines extending from a baseline along the X-axis.

Properties Pane

You can set the following properties for the Scalar Plot element.

¢ Maximum Number of Points to Display at Once — Determine how
many points to show simultaneously. By default this is infinite such that

3-25

3 Working with the Basic Elements

3-26

Test Browser

all points will be plotted. Use a MATLAB numeric that evaluates to a
positive, nonzero integer to set this field’s value.

X Axis — Choose a test variable to use for an X-axis value.

Y Axis — Choose a test variable to use for a Y-axis value.

Line Color — Select a color to use for the line between each data point.
Line Style — Set the type of line to be drawn between each data point.

Line Marker — Choose a symbol to represent each data point.

Stop Element

The Stop element stops an iteration or an entire test unconditionally.

You can use the Stop element with conditional logic elements, such as the IF
element, to control the test’s execution.

Allowed Test Sections
The Stop element can be used in the following test sections:

® Pre Test
e Main Test

| Mew -

* & x|

[=-Untitled

|:i{|---Main Test
D stop
: ‘..Gave Results
- Posk Test

----- H, Test Yectors

----- HH Test Yariables

Properties

L4 Test ¥ectors | Test ¥ariables

When this element runs

I All testing stops

Display Message

Basic Elements

Properties Pane
You can set the following properties for the Stop element.

* When this element runs — Select a stop action for use in Main Test. The
Current iteration stops option stops the current Main Test iteration. The
All testing stops option stops all Main Test iterations and runs Post Test.

Note that when a Stop element is used in Pre Test, All testing stops is the
only option, since Pre Test does not have iterations.

¢ Display Message — Enter a message to display in the Test Report.

Subsection Element

Use subsection elements to organize one or more elements to maintain
readability of your test or to better manage complex test structures. Use
a subsection to:

¢ Group elements under a single root element.

® Organize tests.

e Manage complex test structures.
Allowed Test Sections
The Subsection element can be used in the following test sections:

e Pre Test
e Main Test
® Post Test

3-27

3 Working with the Basic Elements

3-28

Tesk Browser A X Propertie Test Yectors | Test ¥ariables

| Mew -

' ‘ ‘ x ‘ Descripkion

[=l-Untitled
----- Pre Test
E---Main Test

?;g Subseckion

% Enter a description of the subsection here.|

i ‘5ave Results
E~-----Pr|:lsI: Test

----- H,| Test ¥ectors

----- Ea Test Yariables

Properties Pane
You can set the following properties for the Subsection element.

¢ Description — Type in your description of the subsection.

Deprecated Elements

Deprecated Elements

In this section...

“Converting Elements” on page 3-29

“Scalar Plot Conversion Details” on page 3-31

“Vector Plot Conversion Details” on page 3-32

Converting Elements

The Scalar Plot and Vector Plot elements are being replaced by the General
Plot element that was introduced in R2008b. The General Plot element
supports all MATLAB plot types as well as Simulink data.

Note You can no longer create new Scalar Plot or Vector Plot elements. They
no longer appear in the Insert menu or the New Element button in the
SystemTest desktop.

Tests containing Scalar Plot or Vector Plot elements will not automatically
load with those elements. You will be prompted to convert them to General
Plot elements. For example, if you load a test containing a Scalar Plot
element, the following dialog box opens:

SystemTest x|

The test 'Simple_DemoZ' contains test elements that are being deprecated and will not be supported in future releases.
Would you like to replace the elements?

Yes Mo Cancel Help |

If you click the Details button, the dialog box shows the specific element(s)
that will be converted.

3-29

3 Working with the Basic Elements

SystemTest x|

The test 'Simple_Demo2' contains test elements that are being deprecated and will not be supported in future releases.
Would you like to replace the elements?

Details << Yes Mo Cancel Help

all Plot - Scalar test elements will be replaced with Plot - General test elements,

In this case, the test contained one or more Scalar Plot elements.

Choose the conversion option as follows:

® Yes — Your Scalar Plot and/or Vector Plot elements are converted to
General Plot elements. The test is not saved until you explicitly do so.
See the next two sections for conversion details.

e No — Your Scalar Plot and/or Vector Plot elements are not converted to
General Plot elements. The test loads with the old elements. You can save
the test with the old elements. However, in a future release, you will not be
able to load the test until you convert the elements.

e Cancel — The test is not loaded.

For information about the General Plot element, see “General Plot Element”
on page 3-15.

3-30

Deprecated Elements

Scalar Plot Conversion Details

When you convert a Scalar Plot element to a General Plot element, these

rules apply:

e Each Scalar Plot element maps one to one to a new General Plot element

with the same name.

e Kach General Plot element is created with default values.

® For each row in the Lines to Plot table in the Scalar Plot element, these
actions occur in the same order as the rows appear in the table.

Scalar Plot Element Component

What Is Loaded in the General
Plot Element

Plot Type drop-down list

A “plot” plot type is added to the
axes.

X Axis drop-down list

Mapped to X Data Source of the
newly added plot type.

Y Axis drop-down list

Mapped to Y Data Source of the
newly added plot type.

Line Color drop-down list

Mapped to Line color of the newly
added plot type.

Line Style drop-down list

Mapped to Line style of the newly
added plot type.

Line Marker drop-down list

Mapped to Line marker of the
newly added plot type.

Maximum Number of Points to
Display at Once option

This parameter is not converted and
1s ignored.

Note that every point in the plot is
retained. There is no limit to the
number of points.

3-31

3 Working with the Basic Elements

3-32

Plot Type

This figure shows an example of a Scalar Plot element (left) converted to a

General Plot element (right).

E o

X Axis

I Tteration Number

Maximum Number of Points to Display at Once

IInf

rLines to Plot

[t [# 8| X

Y Axis

Line Color Line Style Line Marker

TestVectorl

<auto>

¥ || solid ¥ || Mo Marker

Varl

| 4

Cyan

Dashdot

| 4

Plus

| 4

-
-

General I Options |

‘ Add Axes | Add Plat -

> Delete |

= Figure
HAxes
=

r~Properti

Plot Type: ’ E‘ semilogx

¥ Data Source: |<Iterahnn Number >
Optional

'f Data Source: I\u'arl

Line color: - Line style: —-—- |

Line marker: |+ 'l

Vector Plot Conversion Details

When you convert a Vector Plot element to a General Plot element, these

rules apply:

¢ Each Vector Plot element maps one to one to a new General Plot element

with the same name.

e Kach General Plot element is created with default values.

¢ For each row in the Lines to Plot table in the Vector Plot element, these
actions occur in the same order as the rows appear in the table.

Deprecated Elements

Vector Plot Element Component

What Is Loaded in the General
Plot Element

Plot Type selector

A “plot” plot type is added to the
axes.

X Axis drop-down list

Mapped to X Data Source of newly
added plot type. If the selection was
“none” it 1s mapped to “<Auto>".

Y Axis drop-down list

Mapped to Y Data Source of the
newly added plot type.

Line Color drop-down list

Mapped to Line color of the newly
added plot type.

Line Style drop-down list

Mapped to Line style of the newly
added plot type.

Line Marker drop-down list

Mapped to Line marker of the
newly added plot type.

Subplot Dimensions area

This 1s not converted and is ignored.

Clear axes between iterations
option

If selected, on the Options tab, the
Clear the figure of any previous
iteration’s data option becomes
selected. If cleared, the Keep any
existing data on the figure check
box becomes selected.

3-33

3 Working with the Basic Elements

This figure shows an example of a Vector Plot element (left) converted to a
General Plot element (right).

msmiogy(<Auto, Varl)
R NaE= =il 2)

3-34

Using the Simulink
Element

The Simulink element allows you to override the inputs to a Simulink model
with SystemTest test vectors and test variables. You can further map the
model’s outputs to SystemTest test variables for later processing by other
test elements. This means that you can use the SystemTest software to
define, generate or load input data, feed it into Simulink, run the model while
iterating over the input data, and map the outputs back into the SystemTest
software.

Note To use the Simulink element, you must have a license for Simulink.

e “Before You Begin” on page 4-3

e “Mapping Test Vectors and Test Variables to a Simulink Model” on page 4-5
® “Overriding Inport Block Signals” on page 4-22

¢ “Using Simulink Model Coverage” on page 4-38

e “Using Simulink® Design Verifier Data Files in a Test” on page 4-46

e “Using Signal Builder Block Test Cases in a Test” on page 4-47

e “Using Test Cases and Signals from the Test Case Editor in a Simulink
Element” on page 4-48

4 Using the Simulink Element

Note In Simulink elements, you cannot have more than one model with the
same name. Each model referenced within a test must have a unique name.
If you ran a test containing two models with the same name, the SystemTest
software would only use one of the models.

4-2

Before You Begin

Before You Begin

This chapter explains the Simulink setup by having you recreate the Simulink
element that is part of the Inverted Pendulum demo. Before continuing, you
should load this demo from MATLAB and delete the Simulink element from
the demo.

The following steps describe how to do this:

1 Start MATLAB.

2 Open the Inverted Pendulum demo.
a Select Start > Demos to open the Help browser.
b Expand the MATLAB list from the left frame of the browser.

¢ Select SystemTest. The SystemTest demos open in the right browser
frame.

d Click “Simulink - Mapping and Overriding Simulink Data Using an
Inverted Pendulum Model.” An overview of the demo opens.

e Click the link “Open the demo in the SystemTest Desktop” at the bottom
of the page.

Alternatively, you can enter the following command at the MATLAB
command line:

systemtest InvertedPendulum
The SystemTest desktop opens with the Inverted Pendulum demo loaded.

3 Click the Simulink element in the Test Browser.

4-3

4 Using the Simulink Element

t ¥ x|
= | InvertedPendulum

- Pre Test
[=}-Main Test (32 Iterations)

| Mew -

- ft] Limit Check

- g, IF
Pendulum equilibruim

----- Save Results

- Post Test

=] Test Vectors

~-Cart

- distance

~pend

El--Ea Test Variables

~firnit

~time

~yalues
~maxvalue
~LimitResult
-pendout
-0utl
~ToWorkspace

4 Click the Delete element button in the Test Browser button bar or press
the Delete key.

4-4

Mapping Test Vectors and Test Variables to a Simulink® Model

Mapping Test Vectors and Test Variables to a Simulink
Model

In this section...

“Introduction” on page 4-5

“Adding a Simulink Element” on page 4-6

“Specifying the Simulink Model” on page 4-7

“Overriding Simulink Model Inputs” on page 4-7

“Mapping Simulink Model Outputs to Test Variables” on page 4-13
“Using the Model Output Mappings Assistant” on page 4-20

“Editing a Test Vector or Test Variable from within the Element” on page
4-21

Introduction

To help you learn how to use the Simulink element, this section walks you
through the configuration of the Simulink element for the Inverted Pendulum
test. The Inverted Pendulum demo includes both a model of the pendulum
and a model of a controller that keeps the inverted pendulum balanced.
Moving the bottom of the pendulum disturbs the equilibrium, causing the
pendulum to move and the controller to rebalance it. The Inverted Pendulum
test varies the mass of the pendulum, the mass of the cart the pendulum is
on, and the distance to the pendulum’s center of mass, testing the robustness
of the controller as it attempts to return the pendulum to equilibrium. Using
the Simulink element in a test lets you vary the model inputs and assess
the model outputs.

Note The following sections assume you have loaded the Inverted Pendulum
demo and deleted the Simulink element, as explained in “Before You Begin”
on page 4-3.

4 Using the Simulink Element

Adding a Simulink Element

To add a Simulink element to a test, click the New > Test Element button
in the Test Browser and select the Simulink element. If you have a license
for Simulink, the element list contains the Simulink element, as shown in
the following figure.

| Test Browser

*t & x|

| Mew -~

Test Yeckar, ., Limit Check
FH Test variable.., #| MaTLAE
ﬁJ MATL |E| Scalar Plak
[Limit |
H-dalF € Stop
- L] we ?;;g Subsection
- Save Re: Veckar Plok
..... Post Test ' Data Acquisition 3

[_]___ Test Yectors 4\ Image Acquisition k
] A\ Instrurent Contral — k

B

The SystemTest software adds the Simulink element to the test and opens the
Simulink element Properties pane.

Tesk Browser EO 4 Test Yectors |'Test Yariables
mew- | & @[x|
E-InvertedPendulum

-Pre Test I LIE' Browse. ..

[=-Main Test {32 Iterations)

Sirnlink rodel

Mappings | Model Coverage I

Override Inport Block Signals with SystemTest Data

Override Block Parameters with SystemTest Data

¥

----- Post Test

Override MATLABE and Model Workspace ¥Yariables with SystemTest Data
[—:I---El Test ¥ectors

+#

Assign Model Outputs to SystemTest Data

+#

4-6

Mapping Test Vectors and Test Variables to a Simulink® Model

Specifying the Simulink Model

When you first add the element, the icon in the Test Browser has a red x,
meaning that the element requires some information. The Simulink model
field in the Simulink element Properties pane is outlined in red, indicating
that it is a required field. You must specify the model that the Simulink
element will interact with. If the model is on the MATLAB path, you can type
its name in the Simulink model field. If you are not sure of the name, or
the model is not on the path, you can browse to its location using the browse
button.

For the Inverted Pendulum example, type systemtestpendulum in the
Simulink model field and press Enter. The SystemTest software opens
the systemtestpendulum model in Simulink and opens the Pendulum
Visualization window.

Overriding Simulink Model Inputs

Using test vectors and test variables, you can override the following Simulink
model inputs:

¢ Block parameters — Described in “Overriding Simulink Block Parameters”
on page 4-7

® Model and base workspace variables — Described in “Overriding to
Workspace Variables” on page 4-9

¢ Inport signals — Described in “Overriding Simulink Model Inport Signals”
on page 4-11

Overriding Simulink Block Parameters

You can override Simulink block parameters with SystemTest test vectors

or test variables. When you run the test, Simulink runs the model using
data provided by the SystemTest software. Overriding does not change your
Simulink model file; it only overrides in the test. The procedure for creating
block parameter overrides requires that you select your block in the Simulink
model, but everything else you need to do happens within the Simulink
element Properties pane.

4 Using the Simulink Element

To override a Simulink block parameter:

4-8

In the Mappings tab of the Properties pane for the Simulink element
in the SystemTest software, expand the Override Block Parameters
with SystemTest Data section and click the New Mapping button,
and select Select Block to Add. This opens the model in Simulink, if it
1s not already open.

In the Simulink model window, click the block containing the parameter
you want to override. For this example, click the Pendulum block in the
systemtestpendulum model window.

In the SystemTest software, return to the Simulink element Properties
pane and, in the Override Block Parameters section, you'll see that
the Pendulum was added. If you click the New Mapping button again,
you’ll see that the SystemTest software also adds an entry to this menu
for the block.

-'__"';' Override Block Parameters with SystemTe

t & X|

Select Block to add ... ata

Mew Mapping -

In the override table, the Simulink Data field shows that this entry is
linked to the Pendulum block but the question mark (?) indicates that no
parameter for the block has been mapped.

-'__"',{' Override Block Parameters with SystemTest Data (1)

t & X|

Mews Mapping -

Simulink Daka SystemTesk Data

Pendulun:? - -

Mapping Test Vectors and Test Variables to a Simulink® Model

4 Select the parameter from the block that you want to map. Click the
Simulink Data field for the block and select a parameter from the list. For
the Inverted Pendulum demo example, select Pendulum:Mass of cart

(kg).

5 Specify the SystemTest test vector or test variable you want to map to
this block parameter. Click the SystemTest Data field for the block
parameter. This shows you all defined SystemTest test vectors and test
variables available for mapping. For this example, select cart.

-'.:;' Override Block Parameters with SystemTest Data (1)

Mew Mapping - | & B ‘ . |
Simulink Daka I SyskemTest Data
Pendulurn:Mass of cart (kg) Ll -

maxvalue -~
st_loggedsignal

sk_outportsignal

sk_koworkspace

LirnitR.esult

pend

Overriding to Workspace Variables

You can use a SystemTest test vector or test variable to override either a
MATLAB base workspace variable or a Simulink model workspace variable.
This lets you define test values and conditions in the SystemTest software
and have a Simulink model act on them.

This section describes how you can use the values in the pend and distance

test vectors to override the model workspace variables masspend and
penddistance in the Inverted Pendulum demo.

4-9

4 Using the Simulink Element

To override workspace variables:

1 Expand the Override MATLAB and Model Workspace Variables with
SystemTest Data area of the Simulink element Properties pane, and
click the New Mapping button.

2 Select the workspace variable you want to override. Click the Simulink
Data field of this row to see all available base workspace variables and
Simulink model workspace variables. For the Inverted Pendulum example,
select masspend.

-'_;";' Override MATLAB and Model Workspace Yariables with SystemTest Data (1)

Mew Mapping ‘ f u'r ‘ X |

Simulink Daka SystemTest Data

masscark {model workspace)

masspend (model workspace)) k
penddistance {model workspace)
ans {base workspace)

3 Specify which SystemTest test vector or test variable you want to map to
the Simulink workspace variable. Click the SystemTest Data field of this
row to see all available test vectors and test variables. For this example,
select pend.

4-10

Mapping Test Vectors and Test Variables to a Simulink® Model

-'_:',{' Override MATLAB and Model Workspace Yariables with SystemTest Data (1)

Mew Mapping | + 3 ‘ » |
Simulink Daka I SystemTest Daka
masspend (model workspace) LI] -

maxvalue -
st_|oggedsignal
sk_outportsignal

sb_toworkspace
LirnitResult

cark %

distance -

4 Repeat steps 1 to 3 to override the Simulink model workspace variable
penddistance with the SystemTest test vector distance.

Override MATLAB and Model Workspace ¥ariables with SystemTest Data (2)

| Mew Mapping | f 1‘- | >(|

»

Sirnulink, Data SystemTest Daka
masspend (model workspace) LI pend ﬂ
penddistance (model workspace) LI distance ﬂ

Overriding Simulink Model Inport Signals

As with block parameters and workspace variables, you can use the
SystemTest software to override a model’s inport signals. This lets you
externally manipulate the input signal of a Simulink model.

The Inverted Pendulum demo example does not override any inport signals.

For information on how to override inport signals and an example, see
“Overriding Inport Block Signals” on page 4-22.

4-11

4 Using the Simulink Element

4-12

Optimizing Test Vectors to Work with Inport Signals

Simulink allows you to import input signal and initial state data from the
MATLAB workspace and export output signal and state data to the MATLAB
workspace during simulation. In the SystemTest software, you can specify
the contents of a test vector so that it is used as a Simulink inport. To do that,
use the vector as the mapping in your Simulink element, by selecting it in the
SystemTest Data row as described above.

The Simulink documentation contains guidance on importing data to Simulink
inport signals. You can create the same type of data in your SystemTest

test vectors that you then map to inport signals. For more information on
appropriate data types, see Importing and Exporting Simulation Data in

the Simulink documentation.

Example for Overriding Inport Signals Using Data Arrays

One of the data formats described in Importing and Exporting Simulation Data
in the Simulink documentation is the use of data arrays for specifying input
data to an Inport block. This example uses the systemtestinputdemo.mdl
model to illustrate how the SystemTest software can be used to override the
three Inport blocks in the model with test signals.

The first step involves constructing a test vector that specifies the different
signal test cases. This can be done by creating a MATLAB function that
simply returns a test vector containing the different test cases you would
like to use for each test iteration. A sample MATLAB function, called
GETTESTVECTOR, that does this is provided below.

Mapping Test Vectors and Test Variables to a Simulink® Model

B Editor - C:\MATLAB' getTest¥ector.m i]
File Edit Text Go Cel Tools Debug Deskiop Window Help o | A X

ﬂ__ﬁﬂ|& —_‘Ii.di"',' P‘|.£3|Mﬁ*f‘f-‘_ Ev@ﬁ@%@@|5mck:|8aseﬂ ID;I

E_F*‘%EELE|-|1.D +|+|1.1 x|%9é%9é|"ﬂ_
1 lfunctic\n inportTestVee = getTestVWector i
2
3 % Uze Simulink data array format, i.e. [time Inport 1 Signal ... Inport N Signal]
4 — t = (0:0.1:10)"';
5= iterationl = [t sin(t) sin(l.5%t) sin(2*tc)1]:
6 — iterationd = [t cos(t) cos(l.5%t) cos(2%t)]:
7 - iterationd = [t tanh(t) tanh({l.5%t) tanhi(2*tc)]:
= inportTestVWec = {iterationl iterationd iterationi}:
| getTestvector [Ln 1 ol 1 [ovR | g

Once this function is saved as GETTESTVECTOR, you can create a
SystemTest test vector whose expression is set to GETTESTVECTOR. This
will create a 1-by-3 test vector cell array within the SystemTest software,
where each entry in the cell array represents the time and signal data for
the three Inport blocks.

For detailed information on the Simulink data array format, or other formats
supported by Simulink Inport blocks, see Importing and Exporting Simulation
Data in the Simulink documentation.

Mapping Simulink Model Outputs to Test Variables

Using test variables you can assign the output from the following types of
Simulink model data:

® Logged signals — Described in “Mapping Simulink Logged Signals to Test
Variables” on page 4-14

® Qutport signals — Described in “Mapping Simulink Outport Signals to
Test Variables” on page 4-16

® To Workspace blocks — Described in “Mapping Simulink To Workspace
Blocks to Test Variables” on page 4-18

4-13

4 Using the Simulink Element

4-14

After you map model outputs to test variables, you can incorporate the model
data into the SystemTest software. This section shows you how to map this
data for the Inverted Pendulum example.

Note The output from Simulink models can only be mapped to SystemTest
test variables. You cannot map this output to SystemTest test vectors.

Note If you are mapping logged signals, outport signals, or To Workspace
blocks to test variables, as shown in the following procedures, then you can
optionally use the Mappings Assistant if you want the variables to have the
same names as the inputs. This is useful if your model contains many signals
or blocks and you want to name the outputs the same way. You no longer
have to create test variables with matching names manually. See “Using the
Model Output Mappings Assistant” on page 4-20 for more information.

Mapping Simulink Logged Signals to Test Variables

Logged signals are a way to obtain outputs from a model without adding more
outports. Using logged signals, you can identify a particular signal and map
the output to a SystemTest test variable.

To map logged signals to a SystemTest test variable:

1 Expand the Assign Model Outputs to SystemTest Data section of the
Simulink element Properties pane, and click the New Mapping button.
From the list, select Logged Signal. The SystemTest software adds a
row for a new mapping of this type.

Assign Model Outputs to SystemTest Data

||"-.|EW Mapping -~ i 3 | |

ML I Sirulink Daka I
Cukpart Signal

To Waorkspace Block

Mapping Test Vectors and Test Variables to a Simulink® Model

2 Specify the signal you want to capture. Click the Simulink Data field
to see all the signals in the model. For the Inverted Pendulum example,
select pendout.

Note If you added logged signals to your model and they do not appear
in this list, click the refresh button, on the Properties pane next to the
model name, to update the list.

-'.;";' Assign Model Outputs bo SystemTest Data (1) *
Tew Mapping - f .‘ | x |
Mapping Type Simulink Data SystemTest Data
Logged Signal - -
all signals

3 Specify the SystemTest test variable to which you want to map the output.
Click the SystemTest Data field and select a test variable. For the
Inverted Pendulum example, select st_loggedsignal.

-'__"',E' Assign Model Outputs to SystemTest Data (1)

t & X|

Mapping Type Simulink. Data SystemTest Data
Logged Signal pendout ll -

b,

b3

Mew Mapping -

<Mew Test Yariable ... =

firnik

sk_tirne

walues

maxvalue |

sk_outpartsignal tg -

4-15

4 Using the Simulink Element

4-16

The SystemTest software creates the mapping to the test variable.

Assign Model Outputs to SystemTest Data (1) *
| Mew Mapping = i‘ 3 | >(|

Mapping Type Simulink, Diaka SystemTest Data
Logged Signal pendout ll st_lagaedsignal ll

Note If you are mapping logged signals to test variables, as shown in the
above procedure, then you can optionally use the Mappings Assistant if you
want the variables to have the same names as the inputs. This is useful if
your model contains many signals or blocks and you want to name the outputs
the same way. You no longer have to create test variables with matching
names manually. See “Using the Model Output Mappings Assistant” on page
4-20 for more information.

Mapping Simulink Outport Signals to Test Variables

The SystemTest software lets you map all outport signals to a test variable
for further processing in the SystemTest software.

To map Simulink outport signals to a test variable:

1 In the Assign Model Outputs to SystemTest Data section of the
Simulink element Properties pane, click the New Mapping button. From
the list, select Outport Signal. The SystemTest software adds a row for a
new mapping of this type.

2 Specify the outport signal you want to capture. Click the Simulink Data
field and select a signal. For this example, select Outl.

Mapping Test Vectors and Test Variables to a Simulink® Model

Mew Mapping =

-'_;";' Assign Model Outputs o SystemTest Data (2)

t x|

3 Specify the SystemTest test variable to which you want to map the outport

M

Mapping Type Simulink, Diaka SystemTest Data
Logged Signal pendout LI st_|oggedsignal LI
Cutport Sigral - I - I
&l signals

signals. Click the SystemTest Data field and select a test variable from
the list. For this example, select st_outportsignal.

The SystemTest software creates the mapping to the test variable.

Assign Model Outputs to SystemTest Data (2)

| Mew Mapping -

t 8 |X|

Mapping Type

Simulink, Data

SystemTest Data

Logged Signal

pendout

st _loggedsignal

Cutport Signal

ikl

|
[

st_outpartsignal

[

Note If you are mapping outport signals to test variables, as shown in the
above procedure, then you can optionally use the Mappings Assistant if you
want the variables to have the same names as the inputs. This is useful if

your model contains many signals or blocks and you want to name the outputs

the same way. You no longer have to create test variables with matching

names manually. See “Using the Model Output Mappings Assistant” on page

4-20 for more information.

4-17

4 Using the Simulink Element

Mapping Simulink To Workspace Blocks to Test Variables
When Simulink runs a model with To Workspace blocks, these blocks save
model information in the MATLAB workspace as variables. Using the
SystemTest software, this data can be mapped to SystemTest test variables.

This section shows how you create To Workspace block mappings in the
SystemTest software using the Inverted Pendulum demo as an example.

To map the To Workspace block:

1 In the Assign Model Outputs to SystemTest Data section of the
Simulink element Properties pane, click the New Mapping button. From
the list, select To Workspace Block. The SystemTest software adds a
row for a new mapping of this type.

2 Specify the To Workspace block in the model that you want to capture.
Click the Simulink Data field and select the block from the list. For this
example, select To Workspace.

-'__"';' Assign Model Dutputs to SystemTest Data (3)

Mew Mapping -

t &)X

Mapping Type Sirnulink. Data SystemTest Daka
Logged Signal pendouk ﬂ st_loggedsignal ﬂ
Ctport Signal k1 ﬂ st_oukparksignal ﬂ
To Workspace Block 3

To Waorkspacel
To Warkspacez

3 Specify the SystemTest test variable to which you want to map the To
Workspace block. Click the SystemTest Data field and select a test
variable from the list. For this example, select New Test Variable to
create a test variable.

4-18

Mapping Test Vectors and Test Variables to a Simulink® Model

Mew Mapping =

t X

-'_;"ﬂ Assign Model Outputs to SystemTest Data (3)

Mapping Type Simulink Data SyskemTest Data
Logged Signal pendout LI st_loggedsignal LI
Cukport Signal okl Ll sk_outpartsignal Ll
To Workspace Elock, To Workspace - EI
a

[irnit

sk_time

wvalues
maxvalue
st_loggedsignal
sk_oukpartsignal

The SystemTest software opens the Edit Variable dialog box. Assign a
name to the test variable and optionally an initial value, and then click

OK. Name the test variable ToWSResult.

Editing: ¥arl

X

Marme

ITDWSResurt

Initial value

Assigned in

fpair: Test

8124 Cancel

4-19

4 Using the Simulink Element

4-20

The SystemTest software creates the mapping to the new test variable and
adds the new test variable to the list in the Test Variables pane.

Assign Model Outputs to SystemTest Data (3) =
| Mew Mapping - f 3 | >(|

Mapping Type Simulink, Daka SyskemTest Data
Logged Signal pendout ﬂ st_loggedsignal ﬂ
Qukpart Signal 2kl ﬂ sb_outportsignal ﬂ
To Workspace Block To Workspace LI ToWwSResult LI

Note If you are mapping To Workspace blocks to test variables, as shown in
the above procedure, then you can optionally use the Mappings Assistant if
you want the variables to have the same names as the inputs. This is useful if
your model contains many signals or blocks and you want to name the outputs
the same way. You no longer have to create test variables with matching
names manually. See “Using the Model Output Mappings Assistant” on page
4-20 for more information.

Using the Model Output Mappings Assistant

If you are mapping logged signals, outport signals, or To Workspace blocks to
test variables, for example in the procedures in the above section “Mapping
Simulink Model Outputs to Test Variables” on page 4-13, then you can
optionally use the Mappings Assistant if you want the variables to have the
same names as the inputs. This is useful if your model contains many signals
or blocks and you want to name the outputs the same way. You no longer have
to create test variables with matching names manually. Using the Mappings
Assistant is the preferred method of setting up mappings since it is easier.

1 In the Assign Model Outputs to SystemTest Data section of the
Simulink element, click the Mappings Assistant button above the table.

2 In the Model Output Mappings Assistant dialog box, choose your
mapping(s) in the Create mappings for each section.

Mapping Test Vectors and Test Variables to a Simulink® Model

e If your model contains any logged signals, the Logged Signals option is
available. Select the option to map the logged signal(s) to test variable(s).
If the model contains no logged signals, this option is disabled.

e If your model contains any outport signals, the Outport Signals
option is available. Select the option to map the outport signal(s) to
test variable(s). If the model contains no outport signals, this option
is disabled.

e If your model contains any To Workspace blocks, the To Workspace
Blocks option is available. Select the option to map the block(s) to test
variable(s). If the model contains no To Workspace blocks, this option
is disabled.

3 Click OK to create the mappings.

The Simulink Data column then displays the names of the logged
signals, outports, or To Workspace blocks that the model contained. The
SystemTest Data column displays the test variables created with the
same name.

For example, if the model contains two outports called Out1 and Out2, the
Simulink Data column displays Out1 and Out2, and the SystemTest
Data column displays Out1 and Out2 to represent the test variables that
were created.

Editing a Test Vector or Test Variable from within the
Element

If you want to edit a test vector or test variable while working in the Simulink
element, you can open the appropriate editor by right-clicking on the name of
the test vector or test variable in any of the tables on the Mappings tab.

4-21

4 Using the Simulink Element

4-22

Overriding Inport Block Signals

In this section...

“Introduction” on page 4-22
“Overriding Inport Block Signals in a Simulink Element” on page 4-23
“Using the Inport Block Mappings Assistant” on page 4-27

“Example: Overriding Simulink Inport Blocks Using a Spreadsheet Data
Test Vector” on page 4-28

“Mapping Logged Signals from a Model to Inport Blocks” on page 4-36

“Editing a Test Vector or Test Variable from within the Element” on page
4-37

Introduction

The examples in “Mapping Test Vectors and Test Variables to a Simulink
Model” on page 4-5 described how to override block parameters and workspace
variables. Similarly, you can override signals to root-level Inport blocks in
Simulink with SystemTest data.

Because the Simulink element uses the Inport block names, not the port
numbers, your test works even if you reorder the Inport blocks in the model.

Some users store signal values in a Microsoft Excel spreadsheet or .csv
file. You can create a test vector that reads values from a spreadsheet and
use that as your Inport block signal mapping. The “Example: Overriding
Simulink Inport Blocks Using a Spreadsheet Data Test Vector” on page 4-28
section shows such a scenario.

You can also store signal values in a MAT-file and then create a test vector
that reads the values from the MAT-file. The “Mapping Logged Signals from
a Model to Inport Blocks” on page 4-36 section shows this scenario.

Overriding Inport Block Signals

Overriding Inport Block Signals in a Simulink Element
To override Inport block signals:

1 If you have a model that contains Inport blocks and you have created a
Simulink element that uses that model, click the Mappings tab inside
the Simulink element.

2 Expand the Override Inport Block Signals with SystemTest Data
section by clicking the expander arrow on the right side of the section title.

3 Designate your mappings.

The user interface indicates how many Inport blocks your model contains.
For example, the model used in the Simulink Input demo contains three
Inport blocks, as shown here. You can open this demo by typing the
following in the MATLAB command line:

systemtest SimulinkInputDemo1

4-23

4 Using the Simulink Element

Mappings | Model Coverage I

Override Inport Block Signals with SystemTest Data

The model contains 3 Inpork block(s).

{* Do nok override Inport Block signals, (Use Inport signals defined by the rmodel)

Al Inport blacks are mapped using: I InputSignal LI

" Individual Inpaort blocks are mapped using:

Inport Block Mame I SysbemTest Data I
Inl Inherit from model LI
InZ Inbetit From rmodel LI
In3 Inherit from model LI

mefine test sianal Gme;
{* | Map best signal bime kot I j

= Manually specify a time step: IIII.DI

To calculate end time of simulation:

| lse model stop bine

{1 Use signal's end kime

The first option, Do not override Inport block signals, is selected by
default. That means the test will run the model without modifying any
Inport block settings. Any data the Inport blocks are configured to use will
be used during execution. If you want to override the model, use one of
the other two options.

The All Inport blocks are mapped using option allows you to map data
to all Inport blocks at once. Use the drop-down list to choose an existing

test vector or test variable, or to create a new one. This supports any data
format the Simulink model supports. For example, it could be a test vector

4-24

Overriding Inport Block Signals

that is an array of time and three signal values, such as [time, U1, U2,

u3]j.

If you want to map individual Inport blocks, select the Individual Inport

blocks are mapped using option.

Mappings | Model Coverage |

Override Inport Block Signals with SystemTest Data {individually)

The model contains 3 Inport blockis),

{ Do nok override Inport block signals, {Use Inport signals defined by the model)

Al Inpork: blocks are mapped using: I InputSignal

{+ Individual Inpaort blocks are mapped using:

Inport Block Mame I SyskemTest Data

gy InputSignal

g st _signal

Define test signal time:

™ Map kest signal kime ko: I

{* Manually specify a kime step: IIZI.IIII

To calculate end time of simulation:

% Ise model skap kime

{~ Use signal's end time (based on a time step of 0.01)

When you select this option, the mapping table becomes editable. In the
case shown here, In1 and In2 are being overridden with SystemTest data,

and In3 is using the value in the model.

4-25

4 Using the Simulink Element

4-26

The table displays all Inport blocks contained in the model. By default,
the SystemTest Data column is assigned as Inherit from model. This
1s especially convenient if you have a large number of Inport block signals
and only want to override a small number of them in your test. You would
just change the SystemTest Data column value for the ones you want

to override.

You can update the list of Inport blocks that are displayed in the table
by clicking the Open and update model state button in the Simulink
element. The Inports listed in the table are sortable.

Note If you open a TEST-File and do not see the Inport blocks from your
model reflected in the Simulink element, click the Open and update
model state button:

2l

to populate the Inport table.

Note If you have variables in a Spreadsheet Data test vector or a
MAT-File test vector, you can optionally use the Mappings Assistant. Click
the Mappings Assistant button above the table. For more information
on using the Mappings Assistant, see “Using the Inport Block Mappings
Assistant” on page 4-27.

If you are using the map all option or individual mappings, you need to
define the test signal time and the end time. If you are using the inherit
from model option, skip this step since the time options do not apply to
inherited mappings.

In the Define test signal time option, you can specify the simulation time
signal to provide to the model. To specify the time signal using a test vector
or test variable, select Map test signal time to. To specify a time signal
based on a desired simulation time step, select Manually specify a time
step and then enter a valid time step, which must be a positive number.

Overriding Inport Block Signals

In the To calculate end time of simulation option, either use the model’s
stop time, or use the signal’s end time based on the time step you specified.
The Use model stop time option stops the simulation of the model at

the end time configured in the model. The Use signal’s end time option
stops the simulation of the model at the end of the test signal, temporarily
overriding the end time of the model with the test signal end time.

Note The Define test signal time option and the To calculate end
time of simulation option are disabled if all individual Inport mappings
are set to inherit from the model.

Using the Inport Block Mappings Assistant

If you are overriding Inport block signals, as shown in “Overriding Inport
Block Signals in a Simulink Element” on page 4-23, then you can optionally
use the Mappings Assistant when you use the Individual Inport blocks
are mapped using option.

1 When overriding Inport block signals, select the Individual Inport
blocks are mapped using option.

2 Click the Mappings Assistant button above the table. This button is only
available when you are configuring individual mappings.

3 In the Inport Block Mappings Assistant dialog box, choose your mapping in
the Override each Inport block using section.

e If you are using a Spreadsheet Data test vector, select the A
spreadsheet test vectors headers option. Then in the drop-down list,
select an existing Spreadsheet Data test vector, or create a new one.

e If you are using a MAT-File test vector, select the A MAT-File test
vectors selected variables option. Then in the drop-down list, select
an existing MAT-File test vector, or create a new one.

¢ If you have a test variable whose name matches the Inport block, select
the An existing test variable with a matching name option.

4 The If an Inport block name cannot be matched section determines
what happens in the case of one or more variables in the selected test

4-27

4 Using the Simulink Element

4-28

vector not matching an Inport block name. Select the option you want the
Simulink element to perform. Inherit from Model is the default.

5 The Summary section displays information on how many root-level Inport
blocks are found in the model, how many are mapped to the test vector you
selected if you are mapping from a test vector, and how may will use the
option you chose in step 4 in the case of non-matches.

When you are finished configuring the mappings and viewing the summary,
click OK to create the mappings.

The mappings are then displayed in the table.

Example: Overriding Simulink Inport Blocks Using a
Spreadsheet Data Test Vector

In this example, a Simulink element is being used to test a model of a fuel
rate controller. To see the test and the model, open the demo by typing the
following at the MATLAB command line:

systemtest('demosystest_fuelctrlsldv.test');

The model has four Inport blocks that represent throttle angle, engine speed,
exhaust gas, and manifold pressure.

Overriding Inport Block Signals

E!demusysl:est_fuelctrlsId\r_mudel

File Edik

Miews Simulaktion Format

Tools Help

=10 x|

D@EHES| & B2R| <> 4= & r =m oo

IN-:nrmaI

=i

Fuel Rate Controller Logic

This demo is derived from the original Simulink fuel system model.

-
i1 J{throt N
throttle fail_state
2 } e zpeed fail_state
engine_speed
[3 } | Eqo
EGO fuel_mode
a4 | press fuel_mode
MAP . vy
cantral logic
Ready [100% | | |FixedstepDiscrete v

The tester has values for these four blocks in a Microsoft Excel spreadsheet.
It contains 37 sets of generated values for the blocks. Each set of values is on
a different sheet within the spreadsheet, representing a testing scenario for
the model. One of the sheets is shown here.

4-29

4 Using the Simulink Element

A | B | ¢ | b | E |
1 |Time throttle engine spe EGO Ml AP
2 a a a a a
3 0.m 4 a 1.4 0.002
4 0.0z 4 B29 1.4 0.002
a] 0.03 81 a a 1
3] 0.04 3 a a 2
7 0.05 4 1 a 0.002
] 0.05 4 1 1.4 1
g 0.07 80 a 1.4 0.002
10 0.0s8 80 a 1.4 0.002

Column A represents the simulation time signal. Columns B through E
represent test data for the four Inports in the model. Each of the 37 sheets is
set up the same way but contains different values.

To set up the test vector that reads the data from the spreadsheet:

1 Create the test vector by clicking the New button in the Test Vectors pane.

2 In the Insert Test Vector dialog box, select Spreadsheet Data as the
vector type.

3 On the General tab, name the test vector InputSignal.

4 Click the Add File button and browse to the Microsoft Excel spreadsheet.

4-30

Overriding Inport Block Signals

J Insert Test Vector

Select Test Veckor type:

General I Data Selectionl Skring Replacementl Groupingl

MATLAE Expression
Probability Distribution
Signal Builder Black:
Simulink: Design Verifier Data File

Spreadshest Data

MName: IInputSignaI

Type: ISpreadsheet Data

rFiles ko Read
' Add File(s) | + | 4+ | »¢_Remove Fil Select Al Clear Al

=W c
- ¥ Sheetl
- [Sheet2
- [Sheet3
- [Sheet4
- [Sheets
- [Sheeté
- [Sheet?
- [Sheets —
- [Sheetd

- ¥ Sheek10

- ¥ Sheekll

- ¥ Sheek12

- ¥ Sheek13

- ¥ Sheet14

- ¥ Sheet1s

- ¥ Sheetls

- ¥ Sheet17 =l

Tesk Vector successfully evaluated ko a 1x210 cell array

[~ Evaluate Test Vector each time the test is run

OK | Cancel

5 Click the Select All button to select all sheets in the spreadsheet file.

6 On the Data Selection tab, keep the default of column in the Data is
arranged by option.

7 In the Read data from column option, enter A to E, starting at row 1.

4-31

4 Usin

g the Simulink Element

4-32

8 Select the First row is a header option, since you can see in the above

9 Select the Treat each selected sheet as a test vector value option.

The configured test vector appears as follows.

J Insert Test Vector

Select Test Veckor type:

MATLAE Expression

Probability Distribution

Signal Builder Black:

Simulink: Design Verifier Data File

Spreadshest Data

figure of the spreadsheet that row 1 of the file contains text labels.

General Data Selection I String Replacementl Groupingl
~Data Range
Data is arranged by I column LI
Read data from column |A ko IE starting at row |1

~For Each Selected Sheet:

" Treat each row as a test vector valus

B C A B C
Ex: or 2 G d
Simulink Parameter MATLAB Vector

% Treat sach selected sheet as a tesk veckar value

A B C

or

Simulink Signals MATLAB Makrix

QK

Cancel

10 Click OK in the Insert Test Vector dialog box.

Overriding Inport Block Signals

The new vector appears in the table in the Test Vectors pane. You can see
that the length is 37 because there are 37 sheets in the spreadsheet file and

each sheet is being treated as one value in the vector.

Properties

| Test Yectors LI Test Yariables

Mew, ..

| 4+ 3 | b3 | Evaluate

Grouped Type

Length

e,
=

General I Data Selectionl String Replacement | Groupingl

Mame: IInputSignaI
Type: ISpreadsheet Daka
Files ko Read

Select all Clear all

] Add File(s) | + | ¥ | 2 Remove Fils

- W j H:\Documents)SystemTestisignals_testist_Fuelctrlsldy_data.xls

4-33

4 Using the Simulink Element

Now that the test vector is set up, you can set up the Simulink element to
override the Inport blocks using the test vector values from the underlying
spreadsheet file.

1 Create a Simulink element by clicking New > Test Element > Simulink
button in the Test Browser.

2 Click the browse button to locate the Fuel Rate Controller model.

3 On the Mappings tab, expand the Override Inport Block Signals with
SystemTest Data section if it is not open.

4 Select the Individual Inport blocks are mapped using option. The four
Inport blocks appear in the table.

5 For each Inport block, use the drop-down list in the SystemTest Data
column to override the Inport block with the appropriate data in the test
vector that was created earlier.

For example, for throttle, click the drop-down list, expand the InputSignal
test vector entry, and select throttle. Do the same for the other three
signals.

The entries under the InputSignal test vector represent the underlying
columns in the spreadsheet. Since the Spreadsheet Data test vector called
InputSignal was created using the columns and the headers, the columns
appear named with their headers in the list for easy identification, for
example, InputSignal(throttle).

6 In the Define test signal time option, select Map test signal time to
and choose InputSignal(Time).

Time is the first column in the spreadsheet and contains the simulation
time signal for the model. The test will use these time step values when
the Simulink element is executed.

7 Select the Use signal’s end time option, so that the end times provided in
the spreadsheet are used.

The configured Simulink element appears as follows.

4-34

Overriding Inport Block Signals

Test Yectors Test Yariables

Sirnulink model
H:'\Documents|,SystemTest signals_testidemosystest_Fuelctrlslidy_model,mdl

| demosystest_fuelctrlsldy_model LI i |

fMappings I Madel Coverage |

Override Inport Block Signals with SystemTest Data (individually)

The model contains 0 Inport: block(s),

Do nat averride Inpart block signals, (Use Inport signals defined by the model)

= Al Inpart blocks are mapped using: I

% Individual Inpart: blacks are mapped using:

Ll

Define test signal time:

Inport Block Mame I SystemTest Data I
throttle InputSignal (throttle) LI
engine_speed InputSignal {engineSpeed) LI
EGo InputSignal (EGOY |
Map InputSignal (MAP) |

* Map test signal kime ka: IInputSignaI (Time)

L«

£ Marwally specify a time skep: |D.Dl

To calculate end time of simulation:

£ Use model skop time

% Use signal's end time (based on InputSignal (Time))

Override Block Parameters with SystemTest Data

Override MATLAB and Model Workspace ¥ariables with SystemTest Data

Assign Model Dutputs to SystemTest Data

<%

<%

<%

When the test is executed, the Simulink element will test the model using the

Inport block signals mapped from the spreadsheet.

4-35

4 Using the Simulink Element

4-36

Mapping Logged Signals from a Model to Inport
Blocks
You can map logged signals from a Simulink model, including bus signals,

to Inport blocks of a model using the Simulink element and a test vector or
test variable that contains the logged signal data.

A common usage scenario is to log the signals while running a model and
store them in a MAT-file. Then you can acquire them from the Mat-file using
a MAT-File test vector and map that data to Inport blocks in the Simulink
element. The following high-level steps outline this usage scenario.

1 Do one of the following:

Run your model that contains signals. The signals are logged as variables
in the MATLAB workspace. Save the variables as a MAT-file.

OR
Alternatively, use MAT-file(s) that have already been created and saved.

2 In the SystemTest software, create a MAT-File test vector using the
MAT-file that your signals are saved in. See “Creating MAT-File Test
Vectors” on page 2-14 for more information on MAT-File test vectors.

3 Add a Simulink element to your test, and select the model that you want
to test.

4 In the Override Inport Block Signals with SystemTest Data section,
select the All Inport blocks are mapped option.

5 From the drop-down list, select the MAT-File test vector you created, and
drill down into the variable that represents the signal you want to use.
This is how you map the logged signals to the Inport blocks.

Note that the logged signal(s) and the Inport block(s) must have exactly the
same name(s) for the Simulink element to simulate the model successfully.
See the usage notes below.

6 Run the test.

Overriding Inport Block Signals

Important Usage Notes

— The logged signal(s) and Inport block(s) must have identical names that
match exactly. To use this feature, each Inport block name must match a
corresponding signal name within the logged data. If it does not, you can
rename the Inport block or the signal in the logged data to avoid an error.
You can have other signals in the logged data, but each Inport block must
exactly match a signal name.

— The following data types are supported:

Simulink.Timeseries.

Simulink.TsArrays.

Simulink.SubsysDatalogs.

Editing a Test Vector or Test Variable from within the
Element

If you want to edit a test vector or test variable while working in the Simulink
element, you can open the appropriate editor by right-clicking on the name of
the test vector or test variable in any of the tables on the Mappings tab.

4-37

4 Using the Simulink Element

4-38

Using Simulink Model Coverage

The model coverage feature provided by the Simulink Verification and
Validation software allows you to control the generation of coverage
metrics for a Simulink model from within your SystemTest test. Model
coverage metrics allow you to validate your model by identifying unexecuted
subsystems, unselected switch positions, or untaken conditional transition
paths. You can generate a cumulative coverage report, specify individual
coverage options, or inherit a model’s coverage settings.

Note To use the model coverage feature, you need a license for Simulink
Verification and Validation.

The following basic steps describe the typical work flow to use this feature:

1 Use an existing Simulink element or add one by clicking the New > Test
Element button and selecting Simulink.

2 On the Properties pane, browse for your Simulink model using the browse
button next to the Simulink model field.

To see an example, you can run the Signal Builder demo by typing
systemtest demosystest sigblder in MATLAB.

3 Configure the Simulink element as described in this chapter, using the
Mappings tab of the Properties pane to define model overrides and map
Simulink data to test variables.

4 On the Model Coverage tab, which appears if you have a license for the
Simulink Verification and Validation software, select the Enable model
coverage check box. The following figure shows the Signal Builder demo.

Using Simulink® Model Coverage

5 If you want to use the model coverage settings you already have on the
Simulink model, select the Inherit coverage metric settings from the
model option. Then go to step 12.

When you use this option, if the settings on the model change, the inherited
settings will also change.

4-39

4 Using the Simulink Element

6 If you want to override the existing settings, select the Override model
coverage metric settings option.

These settings are independent of the model.

7 Select Coverage for this model: <modelname>.

r

1R A A

4-40

Using Simulink® Model Coverage

8 Click the Select Subsystem button in the Overridden Coverage
Metrics section to specify the root model of your coverage data. Make your
selection in the System Selector dialog box and click OK.

) System Selector x|

EI—F demosystest_sighldr model

— i Engine

—y Threshold Calculation

—d User Inputs

—3 Yehicle

—H shift logic(StateflowChart)
F-¥ transmission

9 If you have one or more referenced models and you want to gather coverage
for them, select the Coverage for referenced models option.

Then click the Select Models button to select the referenced model(s) for
coverage. Make your selection in the Select Models for Coverage Analysis
dialog box and click OK.

Note that you can record coverage only for referenced models that operate
in Normal mode. You cannot enable coverage for referenced models
operating in Accelerated mode.

10 If you have External Embedded MATLAB® functions in your model that
you want to test, select the Coverage for external Embedded MATLAB
files option. This enables coverage for external Embedded MATLAB
functions called from your model.

4-41

4 Using the Simulink Element

4-42

Coverage Mefrics

v Decision

¥ MCDC

v Signal Range

[T Simulink Design Verifier

In the Coverage Metrics area, select the metrics you require. The
selected metrics will be generated and shown in the coverage report.

¥ Condition
¥ Look-up Table
[signal Size

Summary of coverage metrics:

Decision — analyzes elements that represent decision points in a model,
such as a Switch block or Stateflow states.

Condition — analyzes blocks that output the logical combination of their
inputs, such as the Logical Operator block, and Stateflow transitions.

MCDC — modified condition/decision coverage analysis extends the
decision and condition coverage capabilities. It analyzes blocks that
output the logical combination of their inputs and Stateflow transitions
to determine the extent to which the test case tests the independence of
logical block inputs and transition conditions.

Lookup Table — examines blocks, such as the n-D Lookup Table block,
that output information from inputs in a table of inputs and outputs,
interpolating between or extrapolating from table entries. Lookup table
coverage records the frequency that table lookups use each interpolation
interval.

Signal Range — records the minimum and maximum signal values at
each block in the model, as measured during simulation. Only blocks with
output signals receive signal range coverage.

Signal Size — records the minimum, maximum, and allocated size for
all variable-size signals in a model.

Simulink Design Verifier — collects model coverage data for some
Simulink Design Verifier blocks.

Using Simulink® Model Coverage

12 Use the Map Coverage Data to SystemTest Variables field to map
coverage metrics to test variables. Click New Mapping and select Full
Coverage Instrumentation Path if you want coverage data below the
root you specified under Coverage for this model, or select Select Path
to Map if you want to pick an alternate coverage path, which must be
within the coverage instrumentation path. If you select the latter, your
Simulink model will open and you can select a block to specify an alternate
root for your coverage path.

13 Select the Metric you want to map to a test variable, and specify the test
variable to use under the SystemTest Data column.

~Map Coverage Data to Test Yariables
Coverage Path Metric SystemTest Data
demosystest_sigbldr_model/Thre. .. | Look-up Table ll coverage LI

MNew Mapping -

Note that if you select <New Test Variable> in the SystemTest Data
column, the default name will match the input. For example, if the model
name is systemtestpendulum from the Coverage Path column, and the
metric you select in the Metric column is MCDC Coverage then the default
name for the new variable would be systemtestpendulum_mcdcinfo. The
logical default name reflects the name of the model and the metric. You
can use the default name or change it.

14 Run your test.

15 View the coverage report by clicking the link in the Run Status pane.

4-43

4 Using the Simulink Element

4-44

Test Status: Completed Successfully
Time Elapsed: 00:02:0%

RI=TE

Generated Files
The following files were generated in CAMATLAB

Open Filename
Model Coverage Report
generated by Run Signal outputs\demosystest_sighldr27502583.cvt

Builder Test Cases

TestResults outputsidemosystest_sigbldr_results.mat

Final Test Status

Start Time 07-Apr-201013:43:48
Stop Time 07-Apr-2010 13:45:55
lterations Completed 4

Final Status Completed Successfully

For more information on the model coverage feature, including details

about the coverage metrics, see in the Simulink Verification and Validation
documentation.

Using Simulink® Model Coverage

" demosystest_sigbldr_model Coverage Report 101 =l

File Edit View Go Debug Desktop Window Help

.|

B wp | =] |H |Lomtion:Iﬁle:fffC:ﬁempfmZTPo??ae_EbcD_Jlefc_B?Gl_dcezsasfag3f_demnsystest_sigbldr_mndel_maij
Summary | Details | Signal Ranges | Help

Summary =

Model Hierarchy/Complexity: Test1 J

nj| C1 MCDC TEL

1. demosystest sigbldr_ model 24 94% I S7% I 232% . 44%

2....Engine] MA MA A 22% .

3. ... Threshold Cslculstion 1 100% E— MA MNA 34% mm.

4. ... zhift logic 27 94% I 07— 22% = MA

B SF: shift logic 21 B94% I 07% 33% = MA

8......... SF: gear stste S 100% S— MA A MA

T SF: selection state 12 87% I 7% 33% . MA

8. ... transmission] MA MA A 92% I

8. Torgue Converter o MA MA A 95% I

0. transmission ratio] MA MA A 0% —

Details:

1. Model "demosystest_sighldr_model"

Child Systems: Engine, Threshold Calculation, shift logic, transmission
Metric Coverage (this object) Coverage (inc. descendants)
Cyclomatic Complexity 1 24
Condition {C1) MNA 67% (8/12) condition outcomes
Decision (D1) MNA 94% (30/32) decision outcomes
o (9 -
MCDC (C1) NA 33% (2/6) conditions reversed the
outcome
44% (111/251)
Look-up Table NA interpolation/extrapolation intervals =]

Daone

4

4-45

4 Using the Simulink Element

4-46

Using Simulink Design Verifier Data Files in a Test

The Simulink Design Verifier Data File test vector can read test cases created
by Simulink Design Verifier. In order to use this test vector, you must have a
Simulink Design Verifier data file with test cases.

To use this feature, you first create a Simulink Design Verifier test harness
and set the generate SystemTest harness option in the Configuration
Parameters in Simulink. Then you can do one of two things:

® Generate a SystemTest harness for the model from Simulink. When it
completes, a new test opens automatically in SystemTest and a Simulink
Design Verifier Data File test vector is automatically created for you. A
Simulink element is also automatically created, with links to the model,
override mappings set, and model coverage enabled if your model uses
that feature. This workflow is described in “Automatically Creating a
SystemTest Test Harness from Simulink® Design Verifier” on page 2-55.

e [If you already have a data file from Simulink Design Verifier, you can
create a test vector in SystemTest that uses the data, and create a Simulink
element and configure overrides in it. This workflow is described in
“Creating a Simulink Design Verifier Data File Test Vector” on page 2-57.

Using Signal Builder Block Test Cases in a Test

Using Signal Builder Block Test Cases in a Test

If you use a Signal Builder block in a Simulink model, you can use the test
cases in a SystemTest test.

The most common workflow for this feature is to create a Simulink element
using the model containing the Signal Builder block, and create a Signal
Builder Block test vector from within the element. For an example of this
procedure, see “Creating Signal Builder Block Test Vectors” on page 2-69.

4-47

4 Using the Simulink Element

Using Test Cases and Signals from the Test Case Editor
in a Simulink Element

You can create signals in the SystemTest software and use them to test a
Simulink model. The Test Case Editor provides a graphical way of creating,
editing, and visualizing signal data in SystemTest. You can then map signals
in the Simulink element using a Test Case Data test vector.

Here is an example of one possible high-level workflow of using test cases and
signals in your test via the Simulink element. You will create a Test Case
Data test vector, set up signals in the Test Case Editor, and then map Inport
blocks to the signals in a Simulink element.

1 In the Test Vectors pane, click the New button.
2 Select Test Case Data as the test vector type. Click OK to create it.

See “Creating a Test Case Data Test Vector” on page 5-6 for more
information on this step.

3 In the Test Vectors pane, select the Test Case Data test vector you just
created.

4 Click the Open Test Case Editor button to open the tool.

5 In the Test Case Editor, add one or more test cases using the Add Test
Case button.

See “Creating Test Cases” on page 5-13 for more information on this step.

6 Select a test case and add one or more signals to it using the Add Signal
button. If you plan to map these signals to Inport blocks in your model, you
could create the signals with the same names as the blocks. They are not
required to be the same name, but making them the same name allows the
Mapping Assistant to work (in a later step).

See “Adding Signals to Test Cases” on page 5-18 for more information on
this step.

7 For each signal, append the desired segment or segments to create the
signal to use, and configure its attributes as needed.

4-48

Using Test Cases and Signals from the Test Case Editor in a Simulink Element

See “Adding Signals to Test Cases” on page 5-18 for more information on
this step.

8 Once you have created and edited the test case or cases and signals that
you need, close the Test Case Editor by clicking the OK button at the
bottom of the window. When you close the tool, the SystemTest software
saves the data in the Test Case Data test vector.

9 Return to the SystemTest desktop. You can now use the Test Case Data
test vector and the signals it contains in your test, via the Simulink
element, the Limit Check element, and the General Plot element.

10 Use an existing Simulink element or add one by clicking the New > Test
Element button and selecting Simulink.

11 On the Properties pane, browse for your Simulink model using the
Browse button next to the Simulink model field.

Suppose you are using the following model, which has four Inport blocks
that represent throttle angle, engine speed, exhaust gas, and manifold
pressure of an automobile fuel controller.

4-49

4 Using the Simulink Element

4-50

E!dEmusystesl:_fuelctrlsldv_mudel

Fil= Edit

Wiew Simulation Format Tools

Help

=10l %]

D& BR[| 42 & » m i

INurmal

=l

Ready

Fuel Rate Controller Logic

Thiz demo iz derived from the original Simulink fuel system model.

-
', o throt R
thiottle fail_state e 1)
[2 1} P speed fail_state
angine_speed
2 | B0
EcGO fuel_mode
[4 3} P prass fuel_mode
hAF S/
control logic
[100% | | |FixedstepDiscrete 4

12 In this case, you want to map signals you created in the Test Case Editor to
these four Inports in your model. Use the Override Inport Block Signals

with SystemTest Data section of the Simulink element.

You must use the Individual Inport blocks are mapped using option.
Note that you cannot use the All Inport blocks are mapped using

option. You can map the individual Inports by selecting the signal under
the expanded test vector that matches the Inport block in each row of the

table, as shown here.

Using Test Cases and Signals from the Test Case Editor in a Simulink Element

[8 Test Vectors | Test Variables

Simulink model
C:\MATLAB\signals_test\demosystest_fuelctrisidy_model.mdl

I demosystest_fuelctrisldy_model LI 7 | Browse.

Mappings I Model Coverage |

Override Inport Block Signals with SystemTest Data (individually) -3
The model contains 4 Inport block(s).
" Do not override Inport block signals. (Use Inport signals defined by the model)
w

¢ All Inport blocks are mapped using: I
+ Individual Inport blocks are mapped using:
Mappings Assistant... |

SystemTest Data

Inport Blodk Name

Inherit from model
<Mew Test Vector ... =
<Mew Test Variable ... >

Define test signal ime:

{* Map test signal time to:
= Manually specfy a time step:

To calaulate end time of simulation:

{* Lse mode! stop time

= Use signal's end time

You could also use the Mappings Assistant (click the Mappings Assistant
button to open it) and select them all at once by selecting the Test Case
Data test vector in the A test case data test vector’s signals override

option, as shown next.

4-51

4 Using the Simulink Element

Inport Block Mappings Assistant x|

This will automatically map SystemTest Data to your Simulink model's root level Inport blocks.

—QOverride each Inpart block using:

{* A test case data test vector's signals:

{~ A spreadsheet test vector's headers:

A MAT-File test vector's selected variables: I -

{~ An existing test variable with @ matching name

~If an Inport block name cannot be matched:
{* QOverride Inport block with “Inherit from Model”

{~ QOverride Inport block with an empty selection

{* Map it to & new Test Variable with the same name

rSummary:
4 root-evel Inport blocks found in the model
4 will be mapped to TestVector1's signals
0 will be mapped to "Inherit from Model™
The test signal time will be set to "Testvector 1 (signal's time)"

0K | Cancel |

When you click OK in the Mappings Assistant, the signals are entered into
the SystemTest Data column in the table, and the test uses the signals’
time by default.

4-52

Using Test Cases and Signals from the Test Case Editor in a Simulink Element

Override Inport Block Signals with SystemTest Data (individually)

The model contains 4 Inport black(s).

{~ Do not override Inport block signals. (Use Inport signals defined by the model)

= All Inport blocks are mapped using: I

{* Individual Inport blocks are mapped using:

Mappings Assistant... |

SystemTest Data

Inport Block Mame

TestVector1 (throttle)
Testvector1 (engine_speed)

Testvector1 (EGQ)

RURIRIE

To calculate end time of simulation:
{” Use model stop time
* Use signal's end time (based on TestVector 1 (signal's time })

EGO

Map Testvector1 (MAFR)

Define test signal time:
{* Map test signal time to: ITesfl.l'ecb:nrl (signal's time) -
{~ Manually spedfy a time step: IEI.EIl

13 Set up any other elements for the test.

14 Run the test.

Note When using a Test Case Data test vector to simulate your model as
described in this example, the Interpolate data option in the Simulink Block
Parameters of your model’s Inport blocks will be turned on. This allows data
coming from signals containing segment types like Ramp and Custom to
accurately reflect their value when sampled.

After the test runs, the Interpolate data option will be restored in your

model.

4-53

4 Using the Simulink Element

4-54

Authoring Signals in the
Test Case Editor

® “Introduction to the Test Case Editor” on page 5-2

o “Workflow of Authoring and Using Signals” on page 5-4

e “Creating a Test Case Data Test Vector” on page 5-6

e “Working in the Test Case Editor” on page 5-9

¢ “Linking to Requirements in Telelogic® DOORS” on page 5-38

e “Using Test Cases and Signals in SystemTest Test Elements” on page 5-50
* “Working with Test Cases and Signals Programmatically” on page 5-57

5 Authoring Signals in the Test Case Editor

Introduction to the Test Case Editor

You can create signals in the SystemTest software and use them to test a
Simulink model. The Test Case Editor provides a graphical way of creating,
editing, and visualizing signal data in SystemTest.

Use this tool to create signals based on commonly used patterns and to specify
values for attributes of those signal segments. You can easily create the
following types of signals:

® Constant

® Step

¢ Ramp

® Pulse

® Square

® Sine

¢ Custom

The tool also allows you to view and manage buses and signals, and to

organize them into test cases. You can manage a large number of test cases
and signals.

The Test Case Editor is accessed through the Test Case Data test vector in
the SystemTest software.

Definitions

The following definitions apply to creating and editing signals in the Test
Case Editor.

¢ Segment — A common signal pattern providing property configurations
specific to its type. This individual portion of a signal is used as a building
block for constructing more complex signals.

See “Adding Signals to Test Cases” on page 5-18.

¢ Signal — An array of time-based data used for testing a Simulink model.
Created from one or more segments.

5-2

Introduction to the Test Case Editor

See “Adding Signals to Test Cases” on page 5-18 and “The Signal Types”
on page 5-30.

Test Case — Created in the Test Case Editor, a collection of one or more
signals that can be treated as a set of inputs to a Simulink model.

See “Creating Test Cases” on page 5-13.

Test Case Data test vector — Type of test vector in the SystemTest
software used to manage a 1xN array of test cases. Also the way to open
the Test Case Editor from the SystemTest software.

See “Creating a Test Case Data Test Vector” on page 5-6.

Edit view — View in the Test Case Editor that shows plots of the selected
signals in a test case. Where you build and edit signals.

See “Edit View” on page 5-9.

Test Case view — View in the Test Case Editor that shows a graphical
representation of each signal. Allows an easy way to find and manage
signals when you have many signals in a test case.

See “Test Case View” on page 5-11.

Test Case Options — Accessed by right-clicking a test case, options that
govern the length of test cases and place to add a description.

See “Test Case Options” on page 5-17.

Signal Properties — Properties, such as extrapolation policy and data
type, set on an entire signal in the Signal Properties area of the Edit
view, and place to name a signal.

See “Adding Signals to Test Cases” on page 5-18.

Segment Properties — Properties set on an individual signal segment in
the Segment Properties area of the Edit view. Place to define duration
and values of the segment.

See “Adding Signals to Test Cases” on page 5-18.

5-3

5 Authoring Signals in the Test Case Editor

5-4

Workflow of Authoring and Using Signals

This section describes the high-level workflow of authoring and using signals
in tests. The following sections describe steps in the workflow.

Note that you would often create a Simulink element first and can create
the test vector from the element, but in this workflow example you start by
creating a new test vector.

1 On the Test Vectors pane of SystemTest software, click the New button.
2 Select Test Case Data as the test vector type. Click OK to create it.

See “Creating a Test Case Data Test Vector” on page 5-6 for more
information on this step.

3 On the Test Vectors pane, select the Test Case Data test vector you just
created.

4 Click the Open Test Case Editor button to open the tool.

5 In the Test Case Editor, add one or more test cases using the Add Test
Case button.

See “Creating Test Cases” on page 5-13 for more information on this step.

6 Select a test case and add one or more signals to it using the Add Signal
button.

See “Adding Signals to Test Cases” on page 5-18 for more information on
this step.

7 For each signal, append the desired segment(s) to create the signal you'd
like to use.

See “Adding Signals to Test Cases” on page 5-18 for more information on
this step.

8 For each segment, configure its attributes as needed.

See “Adding Signals to Test Cases” on page 5-18 for more information on
this step.

Workflow of Authoring and Using Signals

9 Once you have created and edited the test cases and signals that you
need, close the Test Case Editor by clicking the x button in the banner or
the OK button at the bottom of the window. When you close the tool, the
SystemTest software saves the data in the Test Case Data test vector.

10 Return to the SystemTest desktop. You can now use Test Case Data test
vector and the signals it contains in your test, via the Simulink element,
the Limit Check element, and the General Plot element.

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Using Test Cases and Signals from the Test Case
Editor in a Simulink Element” on page 4-48.

Note You can access the signal data from a Test Case Data test vector by
using a MATLAB element in your test. For an example of this, see “Using
a MATLAB Element to Access Test Case Data Test Vector Information” on

page 2-78.

5-5

5 Authoring Signals in the Test Case Editor

Creating a Test Case Data Test Vector

As described in “Workflow of Authoring and Using Signals” on page 5-4, you
create a Test Case Data test vector from the SystemTest software, and then

add signals to it using the Test Case Editor. This example starts from the
Test Vectors pane.

To create the Test Case Data test vector:

1 On the Test Vectors pane of SystemTest software, click the New button.

2 In the Insert New Test Vector dialog box, select Test Case Data as the
test vector type.

J Insert Test Vector

Select Test Vector type: General I Grouping |

MATLAE Expression
MAT-File Name: ITestu'ector 1|
Probability Distribution

Type: Test C Dat
Signal Builder Block nEs I sehesenEE
Simulink Design Verifier Data File
Spreadshest Data Test Cases

Open Test Case Editor...

Test Cases

3 Assign a name to the vector in the Name field.

4 Click OK in the Insert Test Vector dialog box.

5-6

Creating a Test Case Data Test Vector

The new vector appears in the Test Vectors pane.

5 On the Test Vectors pane, select the test vector you just created, and click
the Open Test Case Editor button to create the test cases and signals, as
described in “Workflow of Authoring and Using Signals” on page 5-4.

Properties | Test Vectors [4 Test Variables |

Mew... | x | Evaluate

Mame Length Group Mame Type

General I Grouping |

MName: ITestln'Eu:b:ur 1

Type: ITest Case Data

Test Cases

Open Test Case Editor... | /

Test Cases

5 Authoring Signals in the Test Case Editor

5-8

6 Alternatively, you can click the Open Test Case Editor button after step
3, while creating the test vector. If you do that, click OK in the Insert Test
Vector dialog box once you return to the SystemTest desktop.

Whether you create the test cases and signals during creation of the test
vector, or after you have created it, see “Working in the Test Case Editor” on
page 5-9 for information on creating and editing the test cases and signals.

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Using Test Cases and Signals from the Test Case
Editor in a Simulink Element” on page 4-48.

Note You can access the signal data from a Test Case Data test vector by
using a MATLAB element in your test. For an example of this, see “Using
a MATLAB Element to Access Test Case Data Test Vector Information” on
page 2-78.

Working in the Test Case Editor

Working in the Test Case Editor

In this section...

“Navigating in the Edit View and Test Case View” on page 5-9
“Creating Test Cases” on page 5-13

“Adding Signals to Test Cases” on page 5-18

“Working with Buses” on page 5-23

“The Signal Types” on page 5-30

Navigating in the Edit View and Test Case View

The Test Case Editor has two views you can work in. By default it opens in
the Edit view. You can switch between the two views using the Test Case

View and Edit View buttons on the top right of the tool. In the following

diagram, the Edit View button is selected.

=101 x|

—

y

dit View

You edit and work with signals in the Edit view. The Test Case view offers
easy navigation when you have many signals in a test case.

Edit View

The Edit view shows plots of the selected signals in a test case. Select a test
case in the Test Case list to see its signals in the Edit view. Only one test
case at a time can be selected.

5 Authoring Signals in the Test Case Editor

5-10

) Test Case Editor - TestVectorl =10l =]
Edit TestCases Signals Requrements Help
Add Test Case | sionas | Requirements]
|
Test Cases
TestCase1
Signalé
1
o
a5
0 1 2 3 4 L3 7] 10
Signal10
- Add Signal Add Bus I OB fvevrererenen -
-Signal1 =
Signal2 1
sig”alz il - - - - o ‘]
Signalt 0 1 2 3 4 5 7 5 10
Signal5
Signal7
Signals
Signal3 =
=
-Signal11 Signal Properti Segment Properti
~Signal12 Name ; Signals Type: |Sine : . :
-Signal13 (ool - - f:;;‘; . :
Data Type : double |+ Segment Duration (secs) : |10 :
~Signal14 a ype louble g L
--*Slgna:lﬁ Extrapolation Policy : (& Hold last value as a constant Initial Value : o Amplitude
~Signal 16 <
Amplitude : 1 i
-Signal17 Bring back to zero and hold ol ik]
~Signal18 Phase shift (deg) : o Value :
-Signal1s b X l— :
Pt Period Length (secs) : 5 PR ——
-Signalz1 = Sample Rate (secs) : 0.1
oK Cancel I Help

In the lower-left pane is a signal list that lists every signal in the selected test
case. You can click signals in the signal list to select or clear them. You can

select multiple signals by using the Ctrl key as you click on them.

Only signals that are selected in the signal list are shown in the signal display
area. If all signals are selected, all the signals’ plots will be displayed in the
signal display area. A scroll bar appears if the signal plots take up more
vertical room than is available in the signal display area.

In the signal display area, only one signal at a time can be selected. The plot
of the currently selected signal is outlined in yellow. Properties shown in the
Signal Properties section are the values for the currently selected signal.

Working in the Test Case Editor

For information on setting signal properties, see step 4 in “Adding Signals
to Test Cases” on page 5-18.

Properties shown in the Segment Properties section are the values for the
currently selected segment inside the selected signal. The diagram to the
right of the properties shows graphical definitions of the values of the signal
type. For information on setting segment properties, see steps 5 through 8 in
“Adding Signals to Test Cases” on page 5-18.

Test Case View

The Test Case view shows an icon for each signal in the selected test case.
The shape of the signal and its name are shown. The signals are displayed
from left to right across each row and then continue in the next row down, in
the order of creation. A scroll bar appears if the icons use more vertical room
than is available in the view area.

5-11

5 Authoring Signals in the Test Case Editor

5-12

) Test Case Editor - TestVectorl o [=] 3}
Edit TestCases Signals Requirements Help
Add Test Case | signals | Requirements |
|
Test Cases EE
Signal1 Signal2 Signal3 Signal4
Signals Signal? Signald
~ Add Signal Add Bus
Signall =
Signal2 —
Signal? Signala Signal11 Signal12
Signal4
Signals
Signal7
Signalg
Signalg
- Signali1 Signal13 Signal14 Signal1s Signal1s
Signal12 |
Signal13
Signal 14
Signal1s
~Signal16
~Signal17
-~ Signal18 | Signal17 Signal1s Signal1s Signaln
- Signal19
- Signal20 LI
- Signal21 LI e @

In the Test Case view, multiple signals can be selected. The signal icons that
are selected are shown with a dark blue background. Unselected signals have

a white background.

This view allows an easy way to find and manage signals when you have
many signals in a test case. It is easier to locate a signal by looking at the
graphics in this view. It is also easy to add and delete signals in this view.
As in the Edit view, click the Add Signal button to add a signal in the Test
Case view. If you want to edit the signal, you must return to the Edit view, by
double-clicking the signal or by clicking the Edit View button. You can delete
a signal in this view by selecting its icon and pressing the Delete key.

Working in the Test Case Editor

If you have a large number of signals, use the slider at the bottom of the Test
Case view to adjust the size of the graphics, which in turn determines how
many are shown at once. Sliding the bar to the left shrinks the size of the
graphics and displays more of them. Sliding the bar to the right increases the
size of the graphics and shows less of them.

When you click the Edit View button to return to the Edit view, the first
signal that is selected in the Test Case view will be selected in the Edit view
and its plot will be displayed in the edit area.

Creating Test Cases

When the Test Case Editor is opened from the Test Case Data test vector in
the SystemTest desktop, it opens in the Edit view and contains one test case
called TestCase1 by default.

There are two workflows you could follow. You can add multiple test cases,
and then go into each test case and add the signals, or you could add one test
case and then add the signals to it, and then add another test case and its
signals if you have multiple test cases. Both of these workflows are described
below.

To add test cases one at a time with their signals:

1 Rename the default test case, by double-clicking TestCase1 in the Test
Cases list.

2 Type a new name for the first test case and press Enter to change the name.

3 With the renamed test case selected, edit it to add signals, as described in
“Adding Signals to Test Cases” on page 5-18.

4 Once the first test case 1s configured, if you need multiple test cases, click
the Add Test Case button to add a second test case.

5 When creating a new test case, you have the option of populating it with
signals from another test case, or with constant values of 0. In this case,
your first test case contains signals with values that you set, so you may
want to use the second option, The same signal values specified in the
following test case, and then select the first test case in the drop-down
list. You can then edit the new test case to vary it from the first. This

5-13

5 Authoring Signals in the Test Case Editor

option 1s useful to duplicate values from another test case. If you do not
want to start out with the same signals, select the other option, A constant
value of 0.

Specify test case values x|

The new test case will be automatically populated using the signal names from other test cases.

What values do you want these signals to have?

{~ A constant value of 0,

{* The same signal values specified in the following test case:

I TestCasel ;I

O | Cancel |

Click OK.

6 Add signals to the second test case and/or modify signals that it already
contains.

7 Repeat these steps as necessary to create more test cases.
To add multiple test cases and then signals:

1 Rename the default test case, by double-clicking TestCase1 in the Test
Cases list.

5-14

Working in the Test Case Editor

) Test Case Editor - TestVectorl
Edit TestCases Signals Requirements Help

| A Tast Case I Signals | Requirements |
Test Cases
TestCase1
Signalé

1
0.5
a
0.5

-1

2 Type a new name for the first test case and press Enter to change the name.

3 Click the Add Test Case button to add a second test case.

Note All test cases must have the same number of signals as well as the
same set of names for their signals. For example if TestCase1 has signals
named SignalA and SignalB, when you create a new test case TestCase2,
it will be populated with two signals named SignalA and SignalB. The two
sets of signals may have different parameters and values set though.

4 When creating a new test case, you have the option of populating it with
signals from another test case, or with constant values of 0. In this case the
first test case’s signal has not been modified yet, so keep the default option
A constant value of 0, and click OK.

5-15

5 Authoring Signals in the Test Case Editor

5-16

Specify test case values x|

The new test case will be automatically populated using the signal names from other test cases.

What values do you want these signals to have?

% A constant value of 0.}

{~ The same signal values spedified in the following test case:

I TestCasel ;l

Ok | Cancel |

5 Rename the second test case by double-clicking its default name, typing
a new name, and pressing Enter.

6 Repeat these steps to add as many test cases as you need.

7 When the test cases are present, add signals to each one by selecting it in
the Test Cases list and then editing it as described in “Adding Signals to

Test Cases” on page 5-18.

To delete a test case, select it in the Test Cases list and press the Delete key,

or right-click and select Delete from the context menu.

Working in the Test Case Editor

Test Case Options

You can set options for the test case by right-clicking on a test case in the
Test Cases list, and selecting Options from the context menu. This opens
the Test Case Options dialog box.

Test Case Options - TestCasel x|

To determine test case length:

% Extend all signals to the longest time

= End all signals at 0= seconds

Description:

K Cancel

To determine test case length:

In order to run a test using the test cases you created, all signals within a
test case must be the same length. In case some signals are shorter than
others, use the following options to determine how to define the end time for
all signals in the test case.

¢ Extend all signals to the longest time means that all the signals will be
extended to the length of the longest signal. For example, if you have four
signals of length 3, 5, 7, and 7, the signals of length 3 and 5 will both be
extended to 7 seconds.

Note that when a signal is extended, it is extended in the way that you
select in the Extrapolation Policy property in the Signal Properties of
a given signal. See step 4 in “Adding Signals to Test Cases” on page 5-18
for more information on setting that property.

5-17

5 Authoring Signals in the Test Case Editor

5-18

¢ Ifyou select End all signals at n seconds, use the arrows to choose the
length that you want all signals to use. Every signal in the test case then
ends at that time in seconds.

Description

You can optionally add a description for the test case here. Enter your text in
the text field and it is saved when you click OK.

Adding Signals to Test Cases

You build test cases in the Test Case Editor by adding signals to them. The
test cases are then used in the Test Case Data test vector, through the
Simulink element in the SystemTest software. The tool supports the following
signal types: constant, ramp, step, pulse, square, sine, and custom.

For information on opening the Test Case Editor from the SystemTest
software, see “Workflow of Authoring and Using Signals” on page 5-4. For
information on creating test cases, see “Creating Test Cases” on page 5-13.

To create signals:

1 In the Test Case list, select the test case you want to populate.

By default, the first time you open the tool from a new Test Case Data
test vector, one test case is created.

2 The test case that is created by default contains one signal when it is
created. You can modify that signal and use it as your first signal, or
delete it.

3 For additional signals, click the Add Signal button that appears above
the signal list in the lower-left pane.

Select the type of signal to add from the drop-down button. For information
about the parameters and constraints of each signal type, see “The Signal
Types” on page 5-30.

Working in the Test Case Editor

) Test Case Editor - TestVectorl

Edit TestCases Signals

Requirements Help

Add Test Case

| Signals I Reguirements I

Test Cases

TestCase1

Signalg
1

0.5
1]
0.5

-1

Signall0
R R ——
+ Add Signal Pl Add Bus DB
8 : : :
E‘ Constant I
Ramp 0
[[[
I| Step
a 1 2 3
@ Pulse
[square Signali4
L T ST
Custom "
- onghar 1o
~-Signalll | rSignaI Properties | rSegment Propertie

If you have only one test case, the new signal is added underneath whatever
signal is currently selected in that test case.

If there are multiple test cases, you are prompted with the Add New Signal
dialog box. Since all test cases need to contain the same signals, the

new signal will also be added to all other test cases. Select the value to
propagate to the other test case(s), then click OK.

5-19

5 Authoring Signals in the Test Case Editor

5-20

4 Set the signal properties for the signal. These are set in the Signal

Properties section underneath the signal plots.

Signal Properties

Mame : ISignaB

Data Type : I double vI

Extrapolation Policy : & Hold |ast value as a constant

{~ Bring back to zero and hold

You can edit signal properties for the selected signal, as follows:

Name — New signals are given a default name. Type a new name in the
edit field.

Data Type — New signals are data type double by default. Accept the
default or select a different data type from the list of standard MATLAB
data types.

Changing the data type changes the value of the signal. Note that if you
change the data type, the change will be applied at run time of the test,
but will not be visually reflected in the Test Case Editor — the Editor’s
user interface will display the signal as if it were still data type double in
the signal plot in the Edit view, as well as the plot icon in the Test Case
view. When you run the test, the values that are used will reflect the data
type that is set.

Extrapolation Policy — All the signals in a test case must have the
same length. If this signal is shorter than the longest signal, this option
determines what value is used to lengthen it. Hold last value as a
constant means that the end value of the signal’s last segment will be held
as a constant for the rest of the time. Selecting Bring back to zero and
hold drops the signal to 0 after the last segment ends.

Working in the Test Case Editor

Property edits are committed when you press Enter or click outside of
the edit field.

5 When you add a signal, it will contain one segment and use default values
for that signal type. Set values for the selected segment in the Segment
Properties section. Each type of signal has a different set of properties
to set. For example, a constant has only Segment Duration and Value
properties, and a pulse has properties for Segment Duration, Initial
Value, Offset, Final Value, and Pulse Width.

—segment Properties

Type: IPLI|SE

Segment Duration (secs): |1III

Initial Value: IIII

== fTsEt=)
Offset (secs): |4 b .
N '
Final Value: |1 Initial :
i
1

Walue
1

Pulse Width (secs): |2

+---Segment Duration---+

For information about the parameters and constraints of each signal type,
see “The Signal Types” on page 5-30.

As you set values in the Segment Properties section, they are committed
and immediately reflected in the plot of the signal when you click outside of
a field or press Enter.

6 Signals contain one segment by default but you can append multiple
segments to define your signal. You can create a signal by concatenating
together any of the supported signal types as segments. The contiguous
segments make up the entire signal’s value.

To append a segment to the selected signal, click the Append button in the
signal plot. Select a signal type for the new segment from the drop-down
list.

The Append button and the arrow buttons only appear in the plot of the
currently selected signal. A signal can be selected by clicking it when in
the Edit view.

5-21

5 Authoring Signals in the Test Case Editor

Signal3

0.5

S e,

~ Append !
|E| Constant
Ramp
Step

IE‘ Pulse

Square
Sine

g Custom

The new segment is appended to the end of the currently selected segment,
and uses default values for that signal type.

7 Edit the Segment Properties for the new segment. Each segment has
its own properties and any edits made will be applied to the currently
selected segment.

See “Signal Concatenation” on page 5-23 for information on the rules that
govern concatenation.

8 While editing a signal with multiple segments:

The currently selected segment is highlighted with a blue line in the
plot. Click a segment to select it.

You can use the left and right arrow buttons in the plot to move the
currently selected segment.

Increasing or decreasing a segment’s length results in shifting the other
segments of the signal as well. (However, it does not change their
lengths.)

You can delete the currently selected segment by pressing the Delete
key.

Note that if you set the Extend all signals to the longest time option
in the Test Case Options, when you make the current signal longer by
adding a segment, any other signals in the test case will be extended

to the same length, using the Extrapolation Policy you selected in
the Signal Properties. In the other signal(s), the additional length is
shown as a dotted line in its plot.

9 Repeat these steps to add as many segments to a signal as necessary.

5-22

Working in the Test Case Editor

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Using Test Cases and Signals from the Test Case
Editor in a Simulink Element” on page 4-48.

Signal Concatenation

You can create a signal by concatenating any of the supported signal types as
segments. The contiguous segments make up the entire signal’s value. The
following rules apply:

¢ The first segment’s start time is 0.

® Any other segments’ start time is the same as the end time of the previous
segment.

¢ The length of a segment is its duration.
¢ The end time of a segment is its start time + duration.

¢ The length of a signal is the sum of the duration of all of the segments.

When the duration of a segment changes, it has no effect on the duration of
any other segments. The length of the other segments remains the same. The
length of the entire signal changes however, because one of its segments
became shorter or longer.

If a segment is added or deleted from a signal, this has no effect on
neighboring segments’ parameters. Individual segments remain the same
length but the signal length changes as a result.

Working with Buses

The Test Case Editor supports the use of buses in your model and you can use
it to create buses and signals within buses.

The hierarchy of buses and signals appears in the signal list in the lower-left
pane of the Test Case Editor, as shown here in the Edit view.

5-23

5 Authoring Signals in the Test Case Editor

)} Test Case Fditor - TestCases

Edit TestCases Signals Reguirements Help

Add Test Case | Signals I Requirements |
Test Cases
TestCase1
Inl.pressure
0.1 R R SRR AR s
D05 — e
0
I e R
K]] |
1 2 3
- addsignal | AddBus
E-=1Inl 1=
pressure Signal Properties —Segment Prope
“-temperature Mame : Ipressure Type :
right |
pressure Data Type : I double vl Segment Durati
*temperature Extrapolation Palicy : 3 {ld ast value as a constant Value :
™ Bring back to zero and hold

5-24

Working in the Test Case Editor

In this example you can see that In1 is a bus containing two signals, pressure
and temperature. The signal pressure is selected in the signal tree and
consequently is displayed and selected in the editing pane, when in the Edit
view.

Nested bus hierarchies are supported. In the example you can see that bus
In5 contains another bus a1, which contains two buses left and right. The
left and right buses each contain two signals, pressure and temperature.

You can select multiple signals in the signal list by pressing the Ctrl key as
you select signals. The following example shows a test case with three signals
selected. You can see that the three signals are selected in the signal list, two
of them within bus In1 and one root-level individual signal In6. Those three
signals are also shown in the signal editing area. Notice that the signal that is
selected in the editing pane, pressure, is labeled In1.pressure in the signal
diagram, to denote it is a signal within bus In1.

5-25

5 Authoring Signals in the Test Case Editor

) Test Case Editor - TestCases

Edit TestCases Signals Requirements Help

Add Test Case | Signals I Requirements |
Test Cases
TestCase1
Inl.pressure
01

0.05

5-26

0.1 ' '
1 2 3
Inl.temperature
[] e e e L
DDS _. f
= Add | Signal | AddBus 0
= Ini =
0 |]]
1 2 3
Ing
D"] ’7 ...
ressure Signal Properties ~Segment Properties -
temperature Mame : Ipressure Type :
= right
Data Type : I double - I Segment Duration (se
“temperature Extrapolation Policy : (& Hold last value as a constant Value :
™ Bring back to zero and hold
=

Working in the Test Case Editor

Note If you have a model that contains buses, you can automatically
generate a test harness from the model. It will create and configure all of the
appropriate parts of the test, including elements, test vectors, and mappings,
and create a test case containing all of the Inport blocks as buses and/or
signals. For more information, see Chapter 6, “Generating a SystemTest
Test Harness from a Simulink Model”.

You can perform some actions by right-clicking buses and signals in the signal
tree. The context menu includes the following commands:

¢ Cut

* Copy

® Paste

e Add Signal

* Add Bus

® Rename

® Delete

e Copy Signal Values to the Same Signal in All Test Cases

In the Test Case view, each level of the bus hierarchy is displayed via icons,
as shown here.

5-27

5 Authoring Signals in the Test Case Editor

5-28

;) Test Case Editor - TestCases =13l x|
Edit TestCases Signals Requirements Help
Add Test Case | Signals | Requirements |
]
Test Cases
|
| = | [| | | | = | [| | |
[[| | [[| |
In1 n2 In3 In4 Ins s n7 Ing
Ing In10
Inl
In5
= Add Signal Add Bus
In5.al
left right
" resmre In5.al.left
*temperature
[|
| @-F— @
oK I Cancel Help

The section at the top of the Test Case view shows all of the signals and buses
that are included in the test case, in the order they appear in the signal tree.
After that, each bus is shown as a group with the signals it contains. The
groups appear in the order they appear in the signal tree. Groups for nested
buses are also shown.

Notice in the example that bus In1 is a root-level bus containing two signals
and no nested buses. But bus In5 is a root-level bus that contains three
individual signals, a, a2, and a3, as well as a nested hierarchy of buses af,
left, and right. Each subgroup is shown in its own section in the Test Case
view.

Working in the Test Case Editor

Notice that one of the signals that is selected, temperature, is in a group that
1s labeled In5.a1.left in the signal diagram. This indicates it is a signal
within the bus left, which is within bus a1, which is within bus In5.

To edit a signal from the Test Case view, double-click the signal’s icon in the
icon area or select the signal icon and right-click Edit Signal. The Edit view
appears and that signal will be selected for editing.

Adding Buses to a Test Case
You can add a bus to a test case, and then add one or more signals to the bus.

1 In the Edit view, click the Add Bus button that appears above the signal
list in the lower-left pane.

The bus is added below any existing buses or signals in the list, at the
highest level in the hierarchy (the root level). It is called Bus1 by default.
You can double-click the bus in the signal list to rename it.

2 The bus is empty until you add signals to it. With the name of the bus still
selected in the signal list, click the Add Signal button.

Select the type of signal to add from the drop-down button.

3 Add as many signals to the bus as you need, as described in “Adding
Signals to Test Cases” on page 5-18.

4 To add another bus, click the Add Bus button again. A second bus, called
Bus2 by default, is added under the first one, at the same level in the
hierarchy if a top-level individual signal was selected. If a bus or a signal
within a bus is selected when you click Add Bus, the new bus is added
under the first bus in a nested hierarchy.

For example, in the following diagram, In10 is selected when Add Bus is
clicked. As a result, Bus1 is added at the end of the bus and signal list.
With In10 still selected, if the button is clicked again, Bus2 is added under
Bus1 at the same root level.

With Bus1 selected, clicking Add Signal results in Signali being added
to that bus. With Bus2 selected, Add Signal results in a Signal1 being
added to that bus. Then with Bus1 selected, if you click Add Bus again,

5-29

5 Authoring Signals in the Test Case Editor

5-30

the new bus i1s added under the signal(s) of the first bus as a nested bus,
as shown here.

- Add Signal |

EIE al

t-pressure
t.-temperature

= In9
E—----pressure
E-----tem|:uera1:|.|re
----- In10

[E-== Bus1
E—----Signal 1
L= Busi
[F-= Bus2

‘.- Signal1 -

The Signal Types

Each signal is defined by several parameters. Using these parameters, the
signal generates time-based data. The following rules apply to all the signals:

e All signal parameters are readable, writable scalar doubles, unless
otherwise noted.

e All time-related parameters are defined in seconds.

e All parameters have constraints that must always be true, and are enforced
when the value is set. For example, Duration must always be positive.

The following tables describe the built-in signal types the tool uses.

Constant

Working in the Test Case Editor

+-—-Segment Duration---+

—s

Segment The length of the signal in seconds. | 10 >0

Duration

Value The constant value of the signal the | 1 none
entire Duration.

Configuration constraint: none.

5-31

5 Authoring Signals in the Test Case Editor

5-32

Step

[Final
Value
Ll :
Initial !
Walue :
[] 1

+-—-Segment Duration---+

Parameter | Definition Default Constraints
Value

Segment The length of the signal in seconds. | 10 >0

Duration

Initial The value of the signal before 0 none

Value Offset.

Final The value of the signal after Offset. | 1 none

Value

Offset The time in seconds when the signal | 5 >0

switches from Initial Value to
Final Value.

Configuration constraint: Duration > Offset.

Working in the Test Case Editor

Ramp

Ini1llal
Value
1

b e=Offset---»

+-—-Segment Duration---+

Parameter | Definition Default Constraints
Value
Segment The length of the signal in seconds. | 10 >0
Duration
Initial The starting value of the signal. 0 none
Value
Final The ending value of the signal. 1 none
Value
Offset The time in seconds when the signal | 5 =0
begins to transition from Initial
Value to Final Value.
Slope The rate of change of the signal over | .2 read-only

time.

Configuration constraint: Initial Value # Final Value.

5-33

5 Authoring Signals in the Test Case Editor

Pulse

[ritial
Value

= ff5et= -,
[:*

+-—-Segment Duration---+

Parameter | Definition Default Constraints
Veslisa
Segment The length of the signal in seconds. | 10 >0
Duration
Initial The value of the signal before 0 none
Value Offset and after Offset + Pulse
Width.
Final The value of the pulse after Offset | 1 none
Value and before Offset + Pulse Width.
Offset The time in seconds when the signal | 4 >0
transitions from Initial Value to
Final Value.
Pulse The amount of time in seconds 2 >0
Width after Offset when the signal has

the value Final Value. The signal
returns to Initial Value afterward
for the rest of the signal.

Configuration constraint: Duration > Offset + Pulse Width.

Configuration constraint: Initial Value # Final Value.

5-34

Working in the Test Case Editor

Square

Period

“LengthT™”

L.

1
Initial

+
Amplitude
I

Value
1

[

+-—-Segment Duration---+

Parameter | Definition Default Constraints
Value
Segment The length of the signal in seconds. | 10 >0
Duration
Initial The amount the square wave 1s 0 none
Value offset vertically.
Amplitude | The value of the signal while in the | 1 >0
high state.
Duty Cycle | The percentage of time the square | .5 0<dc<1
wave has Amplitude as opposed to
— Amplitude.
Phase The value in degrees the signal is 0 none
Shift horizontally shifted into its period.
Period The length in time for a full 5 >0
Length repetition of the wave.

Configuration constraint: none.

5-35

5 Authoring Signals in the Test Case Editor

5-36

Sine

-
i

Initial
Value
+

Period
*Length ™"

L
Amplitude
*

+-—-Segment Duration---+

Parameter | Definition Default Constraints
Value

Segment The length of the signal in seconds. | 10 >0

Duration

Initial The amount the wave is offset 0 none

Value vertically.

Amplitude | The amplitude of the sine wave. 1 >0

Phase The horizontal shift of the period in | 0 none

Shift degrees.

Period The length in seconds of a period. 5 >0

Length

Sample The amount in seconds between 1 >0

Rate each sampled point.

Configuration constraint: none.

Working in the Test Case Editor

Custom

E'[th u

(1, Uy)

{tz, Uz)

Parameter | Definition Default Constraints
Value
Time User-defined time vector. [02468 | 1xN
10] increasing
double
Data User-defined value vector. [20323 | 1xN
1] double

Configuration constraint: Time and Values must have the same length and
dimension.

When specified, Time or Values may be 1xN or Nx1. If specified as Nx1, it will
automatically be converted to a 1xN.

5-37

5 Authoring Signals in the Test Case Editor

5-38

Linking to Requirements in Telelogic DOORS

In this section...

“Introduction and Setup” on page 5-38
“Adding Requirements” on page 5-38
“Requirements Tab” on page 5-41

“Test Case Report” on page 5-44

“Creating Requirements Programmatically” on page 5-46

Introduction and Setup

You can link test cases that you created in the Test Case Editor to
requirements that are in Telelogic® DOORS®. This is done through the
Requirements tab in the Test Case Editor. The integration allows you to
easily link any DOORS requirements to any test cases by selecting them
using their object headings.

Note You need a license for Simulink Verification and Validation to use
this feature.

Note Before using this feature, you must run a setup program one time on
the machine you will be using. In a command window, type

rmi setup

and press Enter. This function is part of Simulink Verification and
Validation setup and enables the use of the Telelogic DOORS integration to
link requirements to a test case in SystemTest. For more information on the
rmi function, see in the Simulink Verification and Validation documentation.

Adding Requirements

Requirements are linked to the currently selected test case in the Test Case
Editor.

Linking to Requirements in Telelogic® DOORS®

To add requirements to a test case:
1 Select a test case from the Test Cases list in the Test Case Editor.
2 Click the Requirements tab.

3 Click the Add link to new DOORS module button.

) Test Case Editor - Test¥ectorl

Edit Test Cases Signals Reguirements Help

Add Test Case | Sigrials Feguirements |

Test Cases Add link to new DODRS madule... |+|

L} Location

The DOORS module selection dialog box opens. Note that DOORS must be
open for this integration to work. If DOORS is not open, an error occurs.

4 In the Browse DOORS dialog box, browse to the module you want to link to.

5-39

5 Authoring Signals in the Test Case Editor

E Browse - DOORS

Pleaze zelect a module

= || DOORS Database

#-{& bashing

--1] Mew Folder

Elﬁ Mew Project
----- @ Attitude Controller Derved Requirements 2
--ﬁ Exarmple Project
- @ Hew Module

=3 uritll

Bl Attitude Controller Derived Reguirements
Attitude Cantraller Derived Bequirements 1
DeleteT abd akeE mpty

E mphykd odule

LiztChangestdodule

Fodulel

k., Cancel

5 Click OK to add the module.

The requirement appears in the table in the main area of the
Requirements tab.

6 Select the object heading you want to link to.

5-40

Linking to Requirements in Telelogic® DOORS®

<) Test Case Editor - TestYectorl

A= E3

Edit Test Cases Signals Requirements Help

Add Test Case Signals Requirements |

Add Ik 2 last DOORS made | -

Location Description

|/ [unith/Aktibude Controller Derived Requirements

1 Inkroduction

Dacument Type: [DOCRS

Moduls Lacation: [fQEfunithfattitude Controller Derived Requiremsnts Browss...
Object Heading:

2 1.1 Purpose of the document

3 1.2 Scape of the software

12 2 Component Design Specifications

15 2.1 Component Intetface

2z 2.1.1 Inputs
23 2.1.2 Parameters
24 2.1.3 Outputs

16 2.2 Atkitude Control and Limit

Object Text:

View in DOORS I

After you add a requirement, the Add button becomes Add link to last
DOORS module and the Browse DOORS dialog opens to the module from
which you have already selected.

Requirements Tab

The table displays requirements and contains the following columns:

® Location — Displays the module location.

¢ Description — Displays the DOORS title number and heading.

5-41

5 Authoring Signals in the Test Case Editor

5-42

Signals Requirements

Add link ta last DOORS madule |+

Location Descripkion

Document Type: IDOORS
Module Location: IE,I’unitIv\,l’Attitude Contraller Derived Requirements Browse. .. |

Object Heading: & 1 Introduction -

1.1 Purpose of the document

3 1.2 Scope of the software
12 2 Component Design Specifications

15 2.1 Companent Interface

22 2.1.1 Inputs
23 2.1.2 Parameters
24 £.1,3 Qutputs

16 2.2 Attitude Control and Limit

]

Object Text: This document: provides the derived software reguirements for a reusable attitude controller that will be used in the Autopilat Project

View in DOORS

In the details section under the table, details of the selected requirement are
displayed, as follows:

* Document Type — Indicates the source document of the requirements, in
this case, Telelogic DOORS.
¢ Module Location — Shows location of the DOORS document.

¢ Object Heading — Displays the list of available objects in the module
location. It shows the DOORS object ID number, title number, and heading.
Selecting an object updates the description in the Object Text area.

Linking to Requirements in Telelogic® DOORS®

® Object Text — Displays DOORS object text of the currently selected object
heading. It is empty if DOORS is not open or available.

Note in the previous illustration that object 2: “1.1 Purpose of the
Document” is selected, and its Object Text is displayed, “This document

”»

provides..... .

¢ View in DOORS button — Navigates to the object in DOORS. If DOORS
1s not open or available, it produces an error.

In the example shown above, where the requirement 2 (number 1.1,
Purpose of the Document) was selected, when the View in DOORS button
is clicked, the following graphic shows how it opens in DOORS with that
requirement selected.

E “Attitude Controller Derived Requirements' current 0.0 in /QE /unitl¥l {Formal module) - DOORS
File Edit Yiew Insert Link Analysis Table Tools User MATLAE Help

| BGE | wam | fdPrian|es5s
J\-"iewlStandard wigw ﬂ| Al levels j |J Hh |J dﬂ E=5 I:_:—| ' 1?5‘ / ?-L
= A:ttitude Controller Derived Requier | p I Software requirements for a reusable attitude contraller E =
=11 Introduction] -
1.1 Purpose of the documer 11In trﬂd uction
1.2 Seope of the softuare: | 2 1.1 Purpose of the document

[*]- 2 Component Design S pecificat .)) . .
This document provides the derived software requirements for a reusable attitude controller that

will be used in the Autopilot Project

3 1.2 Scope of the software

This software is a generic resuable module implemented as a Reference Model in Simulink and
called by other higher level models in the autopilot system.

12 1 2 Component Design Specifications
15 | 2.1 Component Interface

22 2.1.1 Inputs
The following inputs 1o the attitude controller shall be provided:

Attitude command (units of degrees)

Euler attitude angle (units of degrees)

Euler attitude rate (Units of degrees per second)
Autopilot engage signal (0=not engaged, 1=enaged)

23 2.1.2 Parameters

The following tunable parameters for the attitude controller shall be provided such that they can
be set to constant values by the calling function:

Attihdn cornenoed curantric sl limait A oenite ~F doaroee -
KN — I3 T y
A

|Username: dagtest |Exclusive edit mode |

5-43

5 Authoring Signals in the Test Case Editor

5-44

Test Case Report

The Test Case Editor has a separate report that links from the SystemTest
Test Report. If you link requirements to a test case, additional sections are
added to the Test Case report.

The Requirements section is created if at least one requirement is attached
to a Test Case Data test vector. If you have a Simulink Verification and
Validation license, the Object Text will be available in addition to the other
information.

A Test Case Editor report is generated when a SystemTest Test Report is
generated and you run a test that uses a Test Case Data test vector. To enable
the Test Report, in the SystemTest desktop, click the test name in the Test
Browser, and then click the Output Files tab on the Properties pane. In
the Select File Names section, select the Generate report option.

If the report is enabled and you run a test containing a Test Case Data test
vector with requirements, you can open the report at the end of the run by
clicking the Test Report link in Run Status pane of the SystemTest desktop.

Linking to Requirements in Telelogic® DOORS®

Using the example from the previous section, the following window shows the
report that is created.

™ untitled [_ (O

File Edit View Go Debug Deskbop Window Help

= op 3 | &é | 4 | Location:IC:,l’n,l'n_DnT,l’outputs,l'Untitled_report,l'UntitIed_report.html

|>|L|e

Untitled

Test Cases
Requirements

Pre Test

Iteration 1

Test Vectors

e e
TestVector TestCased

Iteration 1 Completed

5-45

5 Authoring Signals in the Test Case Editor

At the top of the report you can see the link to the Test Case report. When
you click that link, the Test Case Report opens.

TestCase1

Description
None
Requirements

1.1 Purpose ofthe document

Results %
lteration 1 COMPLETED
Signals

Notice the link to the requirement in that report. If you click that link, the
details about that requirement appear.

Requirements

1.1 Purpose of the document

Module

D 00000064

Mudul_e [QE/unitivifAttitude Controller Derived Requirements

Location

Object 5

D

Test TestCased

Cases

Object

Heading Purpose ofthe document

(T)::l:ﬂ This document provides the derived software requirements for a reusahle attitude controller that will be used in the Autopilot Project

Creating Requirements Programmatically

In addition to creating requirements in the Test Case Editor as described in
the previous sections, you can create requirement links programmatically for
sue with Telelogic DOORS.

5-46

Linking to Requirements in Telelogic® DOORS®

To create a requirement link, use the systest.requirements.createlink
function, as follows. Note that DOORS must be running.

Create a requirement link object to a DOORS object "1" in the module
"/demo/MyModule".

reqLinkObj = systest.requirements.createlLink('DOORS', '/demo/MyModule' , 'DOORS Object','1")

Create a requirement link object from a requirement link structure attached
to a Signal Builder block in a model.

blockPath = 'mymodel/SignalBuilderBlock/"';
reqStruct = rmi('get',blockPath,1);
reqLinkObj = systest.requirements.createLink(reqStruct);

For more information, see the reference page for
systest.requirements.createlink.

You can determine the supported requirements information using the
getInfo function.

info = systest.requirements.getInfo(format,modulelocation) returns
information describing the supported link values in the modulelocation for
a given format. format and modulelocation must be specified as a string.
format is not case sensitive but modulelocation is case sensitive. info is
returned as a 1x1 structure containing the following fields:

® ModuleID — A string containing the module ID.

ModuleLocation — A string containing the module location.

AvailableObjectIds — A 1xN cell array of strings containing the object
IDs for the specified ModuleLocation.

ObjectID — The ID string for the DOORS object.
ObjectHeading — The heading string of the DOORS object.

To get the module location of the DOORS object:

doorsObject.ModuleLocation

5-47

5 Authoring Signals in the Test Case Editor

5-48

You can use the function getObjectText () to get the Object Text of a DOORS
object when DOORS is open:

txt = getObjectText(doorsObject);

You can use the getStatus() function to determine the requirement link’s
status.

[validflag msg] = getStatus(obj) gets the status of a DOORS
Requirement link object obj. validflag is true if you are also able to navigate
to the DOORS object. If validflag is false, the function returns a message
msg describing why the link is invalid.

You can view the requirement link in DOORS using the view() function. To
open the link in the module:

view(obj)

This function opens the module in DOORS if the link is valid. It throws an
error if DOORS is not available or open. It also errors if Simulink Verification
and Validation is not installed. It errors if getStatus(obj) is false.

Examples

A design engineer at an automobile company uses DOORS to capture her
requirements. The requirements are in a module inside a project. The
engineer has created a test case for three of the requirement objects in the
module. She wants to link these requirements to the test case.

objectIDList = {'001234','001235"','001236"'};

module = '/ProjectCar/EngineModel’;

doorsReqObjs = systest.requirements.createLink('DOORS',module, 'DOORS Object',objectIDList);
testCases.Properties.Requirements = doorReqObjs;

While working in the test case, the engineer wants to look at the requirements
to make sure the test case has the correct values.

view(testCase.Properties.Requirements(3))

Linking to Requirements in Telelogic® DOORS®

For more information, see the reference pages for
systest.requirements.createlink and systest.requirements.getInfo.

5-49

5 Authoring Signals in the Test Case Editor

5-50

Using Test Cases and Signals in SystemTest Test Elements

In this section...

“Introduction” on page 5-50
“Simulink Element” on page 5-50
“MATLAB Element” on page 5-51
“General Plot Element” on page 5-51

Introduction

You can use the test cases and signals you create in the Test Case Editor
within your test by using some of the test elements within the SystemTest
software.

You can select a Test Case Data test vector or individual signals from the test
vector within the following elements:

e Simulink element
e MATLAB element

e General Plot element

The following sections discuss using test cases and signals in these elements.

Simulink Element

You can create signals in the Test Case Editor and use them to test a Simulink
model. You do this by mapping the signals in the Simulink element using a
Test Case Data test vector.

One possible high-level workflow of using test cases and signals in your test
via the Simulink element is:

® (Create a Test Case Data test vector.
¢ Open the Test Case Editor from the test vector.

® (Create a test case and signals in the Test Case Editor.

Using Test Cases and Signals in SystemTest Test Elements

® Return to the SystemTest desktop and create a Simulink element.

¢ In the Simulink element, map Inport blocks in your model to the signals
you created in the Test Case Editor by selecting the Test Case Data test
vector or individual signals in the Simulink element.

Note For an example of using signals created in the Test Case Editor in a
Simulink element, see “Using Test Cases and Signals from the Test Case
Editor in a Simulink Element” on page 4-48. It includes the workflow outlined
here and gives details on the steps in the Simulink element.

MATLAB Element

You can access the data from a Test Case Data test vector by using a MATLAB
element in a test that has a Test Case Data test vector. You could use the
data for a variety of reasons, such as writing it to a CSV file, calling a custom
function, or creating a plot.

To see example code you could use in a MATLAB element, see “Using a
MATLAB Element to Access Test Case Data Test Vector Information” on
page 2-78.

General Plot Element

You can plot data from a Test Case Data test vector or any individual signals
from a Test Case Data test vector in a General Plot element. Test Case Data
test vectors and signals are supported in two plot types — plot and Simulink
data. Any other plot type results in an error at run time.

Note You can only plot an individual signal in the General Plot element. If
your test case contains a bus, you cannot select the bus in the plot. You can
select an individual signal within the bus.

The following sections describe the behavior of using a Test Case Data test
vector or an individual signal for these two plot types.

5-51

5 Authoring Signals in the Test Case Editor

plot Plot Type

® Test Vector — If you use a Test Case Data test vector as the Y Data
Source and X Data Source is left as <Auto>, then all signals within
the test vector are plotted on the same axes versus their times. In the
example shown here, the test vector TestVector1 is selected, so all four of
its signals will be plotted.

General | Options |

| Add Axes | Add Plot +

¢ Delete |

~Properties

Flot Type: f\/\/ plot j

X Data Source: |<.-'-\ut0> -
Optional

¥ Data Source: (I -

..... ;l

Line color: i <MNew Test Vector ... =

N a

5-52

Using Test Cases and Signals in SystemTest Test Elements

If your test vector includes signals that are scaled very differently, see the
note about scaling at the end of this section.

¢ Individual Signal — If you specify an individual signal as the Y Data
Source and X Data Source is left as <Auto>, then that signal is plotted
versus its time. In the example shown here, the signal engine_speed is
selected, so that signal will be plotted.

General | Options |

| Add Axes | Add Plot +

2 Delete |

[=-Figure

ot (<Auto>, ...)

~Properties

Plot Type: f\/\/ plot j

X Data Source: |<.-'-\ut0> -
Optional

¥ Data Source: | -

-<Iteration Mumber >
-<MNew Test Vector ...>
-<New Test Variable ...>

Line color:

5-53

5 Authoring Signals in the Test Case Editor

5-54

Simulink data Plot Type

e Test Vector — If you select a Test Case Data test vector in the Simulink
Data field, then all signals within the test vector are plotted on the same
axes versus their times. In the example shown here, the test vector
TestVector1 is selected, so all four of its signals will be plotted.

General | Options |

| Add Axes | Add Plot +

¢ Delete |

El-Figure

B < ksimuiink data (...)

Properties
Plot Type: H] Simulink data -
Simulink Data: I A
...... d
i--<Iteration Number >
Line color: <MNew Test Vector ...
<Mew Test Variable ... >

If your test vector includes signals that are scaled very differently, see the
note about scaling at the end of this section.

Using Test Cases and Signals in SystemTest Test Elements

e Individual Signal — If you specify an individual signal in the Simulink
Data field, then that signal is plotted versus its time. In the example
shown here, the signal engine_speed is selected, so only that signal will be
plotted.

General | Options |

| Add Axes | Add Flot +

> Delete |

B Firuiink data (...)

Properties

Plot Type: H] Simulink data -

simuiink Dzt | I -

-<Iteration Number =
-<New Test Vector ... =
-<New Test Variable ... >

Line color:

5-55

5 Authoring Signals in the Test Case Editor

5-56

Note If you plot a Test Case Data text vector, either using plot or Simulink
data plot type, and the signals within the test vector are scaled very
differently, you may prefer to plot the signals on different axes.

If you want each signal to appear with its own scale, add an axes for

each signal and then add the plot to each axes. For example, if you have
TestVector1 and it has three signals, Signalil, Signal2, and Signal3, you
could plot it as shown here.

| Test Variables

General I Options |

‘ Add Axes | Add Plot -

¥ Delete |

Working with Test Cases and Signals Programmatically

Working with Test Cases and Signals Programmatically

In this section...
“Test Case Editor API” on page 5-57

“Loading and Saving Test Cases” on page 5-58
“Editing Test Cases” on page 5-59
“Creating Signals” on page 5-60

“Importing Data from an External Source into a Test Case” on page 5-61

Test Case Editor API

The functionality of the Test Case Editor, as described in this chapter, is also
available via a command-line interface. The functions allow you to do the
following tasks programmatically:

® create test cases, signals, and segments

® add test cases, signals, and segments to a SystemTest test

® configure and edit test cases, signals, and segments in a test

® extract test cases, signals, and segments from a test

For information on usage and syntax of the functions, see these reference
pages.

The objects:

® systest.TestCase
® systest.signals.Signal

® systest.signals.segments
The saving and loading functions:

® stLoadTestCases

® stSaveTestCases

5-57

5 Authoring Signals in the Test Case Editor

The signal manipulation functions:

e isSignal

e setSignal

® getSignal

® removeSignal
® renameSignal
® setDataType
® horzcat

® getInfo

Loading and Saving Test Cases

If you have a test with test cases you can load and save them
programmatically. The test cases can be created using the Test Case Editor,
as described in this chapter, or they can be created with the automatic test
harness generation feature. A test can be generated automatically from
Simulink (see “Generating the Test Harness from Simulink” on page 6-4), or
via the command line (see “Generating the Test Harness at the MATLAB
Command Line” on page 6-13).

In this example workflow, we will generate a test automatically, then load the
test cases, modify them, then save the test cases.

1 Create a SystemTest test called myTest.test from the command line based
on the model myModel.

systest.createHarness('myModel', 'C:\Work\myTest.test');

The test is created and put into your C:\Work folder.

2 As part of the test generation, one or more test cases are created with
signal names corresponding to the Inport blocks in your model. You can
now access the test case(s) programmatically.

Load the test cases contained in the test myTest.test.

testCases = stLoadTestCases ('myTest.test');

5-58

Working with Test Cases and Signals Programmatically

3 You can now modify the test cases, using the functions listed in “Test Case
Editor API” on page 5-57. For example, you could add and/or modify signals
contained in the test case(s).

4 After you have finished working with the test case(s), you can save them
back to the test.

stSaveTestCases('myTest.test', testCases);
5 Load the test in the SystemTest desktop.

systemtest('myTest.test')

Editing Test Cases

You can add test cases, signals, and segments to a test and configure and edit
existing test cases, signals, and segments in a test.

signal = systest.signals.Signal(segment_type) creates a signal with a
segment of type segment_type.

For a list of supported segment types and their properties, see the reference
page for the systest.signals.segments function.

The following is an example workflow of editing existing test cases. In this
case we load the test case, add a signal to it, then save the test case.

1 Load the test cases contained in the test myTest.test.
testCases = stLoadTestCases ('myTest.test');

2 Create a ramp segment with an Offset of 2 and a FinalValue of 6.

segment = systest.signals.segments.Ramp('Offset', 2, 'FinalValue', 6)

3 Update the first test case’s signal MySignal to use the new segment.
testCases(1).MySignal.Segments = segment;

4 After you have worked with the test case(s), you can save them back to
the test.

stSaveTestCases('myTest.test', testCases);

5-59

5 Authoring Signals in the Test Case Editor

5-60

Creating Signals
You can create signals with default properties or create them and specify

properties. You can create the following signal/segment types:

® Constant — A segment with a constant value.

e Custom— A segment with user-specified time and data vectors.
Properties include:

® Pulse — A segment with a pulse value.

® Ramp — A segment with a linearly changing value.

® Sine — A periodic sine wave.

e Square — A periodic series of pulses.

® Step — A segment that transitions from a one value to another.

For a list of the properties for each segment type, see the reference page for
the systest.signals.segments package.

If you add a segment and do not specify any properties, it is created with
default properties. Default properties of the signals are defined in “The
Signal Types” on page 5-30. To add properties, follow the syntax shown in
the examples below.

Creating Signals with Default Values

Create a signal with one segment using default values, in this case a
constant.

systest.signals.Signal('Constant')

Create a Signal with two segments using default values, in this case a
constant segment followed by a step.

systest.signals.Signal('Constant', 'Step')
Creating Signals with Properties

Create a segment with one property, in this case a Constant segment with a
Value of 5 .

Working with Test Cases and Signals Programmatically

segment = systest.signals.segments.Constant('Value', 5)

Create a segment with multiple properties, in this case a ramp segment with
an Offset of 2 and a FinalValue of 10.

segment = systest.signals.segments.Ramp('Offset', 2, 'FinalValue',

Appending Segments to Signals

If you create segments, you need to append them to signals. The following is
an example of creating a signal, creating segments, then adding the segments
to the signal.

Create a signal with one segment.
signal = systest.signals.Signal('Step');
Create two stand-alone segments.

ramp = systest.signals.segments.Ramp();
pulse = systest.signals.segments.Pulse();

Add the two segments to the end of the signal’s Segments property, which is
an array of segment objects.

signal.Segments = [signal.Segments ramp pulse]

Importing Data from an External Source into a Test
Case

You can use the programmatic interface to import test cases from external
sources, such as an Excel file, a Simulink Signal Builder harness, or a
Simulink Design Verifier data file.

The following is an example of the basic high-level workflow of importing
data from an external source. To see the details of this example, see the
demo “Importing Test Cases from Excel into a Test Harness” by opening the
SystemTest Help, then Demos > Programmatic Interface > Importing Test
Cases from Excel into a Harness.

1 Start with a model. In the case of this demo, the model contains an Inport
block with a bus that contains four signals.

5-61

10)

5 Authoring Signals in the Test Case Editor

2 The demo imports a test case from a single worksheet in an Excel file using
the function x1sread. It also assigns the data in the columns to signals
in the test case.

3 Create a test case using the systest.TestCase function.

4 Create signals from the data in the spreadsheet columns using the
systest.signals.Signal function.

5 Create a SystemTest test file using the systest.createHarness function.

6 Then append the test case to the newly created test using the
stLoadTestCases and stSaveTestCases functions.

To see the specific commands for these steps, see the above referenced demo
in the SystemTest Help.

5-62

Generating a SystemTest

Test Harness from a
Simulink Model

¢ “Introduction” on page 6-2
® “Prerequisites” on page 6-3
® “Generating the Test Harness from Simulink” on page 6-4

® “Generating the Test Harness at the MATLAB Command Line” on page
6-13

6 Generating a SystemTest Test Harness from a Simulink Model

6-2

Introduction

You can automatically generate a SystemTest test harness from a model in
Simulink. It will create and configure all of the appropriate parts of the test,
including elements, test vectors, and mappings.

The following steps are automatically performed from your model:

® Creates a SystemTest test.
e (Creates a Simulink element.
e (Creates a Test Case Data test vector.

® Automatically maps each Inport block to the corresponding signal of the
test vector in the Simulink element.

¢ (Creates signals with names that match the root-level Inport block names.
® Sets up the data type of each signal based on the Inport blocks’ data type.

e [f the signal has buses, sets up the signals’ data type for the Inport block
using buses as data, and matches the hierarchy of the bus in the test case.

® Automatically sets up the model name and location in the Simulink
element for top-level models with root-level inports and outports.

Prerequisites

Prerequisites

The automatic test generation requires that the model contain root-level
Inports. If it does not, you will get an error message and a test harness will
not be created. The following conditions apply to the Inports:

® Model must contain root-level Inports.

® The model’s root-level Inports must have scalar dimensions. If any contain
non-scalar dimensions, you will get an error.

® The model’s root-level Inports must use a supported datatype. If any use an
unsupported datatype, you will get an error. Supported datatypes include
double, single, int8, uint8, int16, uint16, int32, uint32, and logical.

The test file name and folder location must be writable in order for the test
to be created (step 2 in the next section). If it is not, you will get an error.

Choose another name or location that is writable.

The model must be able to be compiled. If it fails to compile (using the
Update Diagram button in Simulink), you will get an error.

6-3

6 Generating a SystemTest Test Harness from a Simulink Model

Generating the Test Harness from Simulink

This example uses the following simple model, which contains two Inports,
one of which is a bus.

(0 x]

File Edit View Simulation Format Tools Help

D EHES| & 2R 4 2] b =00 | [Nomal =

@ double >{ 5 double >®

In1 Dt

@ EL;Db'E_ct . ‘ 5 double >®
In2 D2

Ready [100% | | \VariableStepDiscrete v

To create a SystemTest test harness:

1 From the model in Simulink, select Tools > SystemTest > Create Test
Harness.

Generating the Test Harness from Simulink

The Create Test Harness dialog box opens.

) systemTest - Create Test Harness - 0] x|

A test harness for the model "mInports_Buses” will be created in @ new SystemTest
test file. The test harness will feed data to the inport blocks of your model then
simulate your model.

Flease specify name and location of test harness file:

IH: ‘Documents\MATLAB \mInports_Buses_harness. test

Mote: Creating a test harness may take time to compile the model.

Create Test Harness Cancel

2 The test that is created is named the same as the originating model
with “_harness” appended by default. Notice in this example that the
model name is mInports_Buses.mdl and the default name of the test is
mInports_Buses_harness.test. Accept the default test name or type a new
name in the text field.

By default, the location is the current folder in MATLAB. Accept the
location or use the Browse button to select a different folder.

3 Click the Create Test Harness button.

6 Generating a SystemTest Test Harness from a Simulink Model

6-6

The test and its components are created and they are checked off in the
Create Test Harness dialog box as confirmation.

) systemTest - Create Test Harness o] |

0 Validated the test file name

0 Compiled the model "mInports_Buses”™
2 Configured Test Case Data test vector
¢ configured test

3 configured Simulink element

The SystemTest test harness has been generated,

Launch Harness

4 Click the Launch Harness button to open the new test.

The SystemTest software opens and you can see the Simulink element and
the test vector that were automatically created in the Test Browser.

Generating the Test Harness from Simulink

) SystemTest - H:\Documents\MATLAB\mInports_Buses_harness.test*
File Edit Insert Run Tools Desktop Window Help

NS d| 92 | Blrn @5 | @

Test Browser

A X Test Vectors ["Test Variables |

| New ~

+ & x|

B j miInports_Buses_harness

General | output Files | Distributed |

~This Test Passes If

= Al limit check elements in an iteration pass

+ Alliterations pass

{~ Any iteration passes

Description

This test was auto-generated for the model "mInports_Buses” on Monday 19 April 2010 5:24:25FM

Y el

Note that text is added to the Test Description on the General tab
indicating that this test was auto-generated from your model.

Other test properties are set to their defaults — Select Output Folder

is set to Same folder as TEST-file, the results file is named “<model
name>_harness_results.mat”, the Generate report option is selected, and
the Output Folder Numbering option is set to Always use the same

6-7

6 Generating a SystemTest Test Harness from a Simulink Model

6-8

folder (overwrite files). You can see these options on the Qutput Files
tab of the Properties pane.

Select the Simulink element in the Test Browser. By default it is named
“Simulate <model name>".

If you want to change the name of the element, double-click it in the Test
Browser and type a new name.

The generated test automatically maps Inport blocks from the model to
signals in the test vector that is created, and uses the Individual Inports
blocks are mapped option. Notice in the example model shown in the
beginning of this section that there are two Inport blocks, In1 and In2.
Those two Inports are mapped in the Simulink element, as shown here.

Generating the Test Harness from Simulink

I mlnports_Buses ;I Sl Browse...

Mappings | Model Coverage I

Override Inport Block Signals with SystemTest Data (individually) &
The model contains 2 Inport block(s).

{~ Do not override Inport block signals. (Use Inport signals defined by the model)

Al Inport blocks are mapped using: I LI
{+ Individual Inport blocks are mapped using:

Mappings Assistant... |

Inport Block Mame SystemTest Data

TestCases (In1)

In2 TestCases (In2) ﬂ

Define test signal time:

{+ Map test signal time to: ITestCases { signal's time) j

{~ Manually specify a time step: III'.Ell

To calculate end time of simulation:

{* Use model stop time

= Use signal's end time (based on TestCases { signal's time J)

TestCases (In1) is the signal called In1 in the Test Case Data test vector
called TestCases. In1 is a regular signal and In2 is a bus signal. You can
see that it is a bus if you expand the signal in the SystemTest Data list.

6 Generating a SystemTest Test Harness from a Simulink Model

I mlnports_Buses LI Sl Browse...

Mappings I Model Coverage |

Override Inport Block Signals with SystemTest Data (individually) 3
The model contains 2 Inport block{s).

{” Do not averride Inport block signals. (Use Inport signals defined by the model)

i~ Al Inport blocks are mapped using: I ll
¥ Individual Inport blocks are mapped using:

Mappings Assistant... |

SystemTest Data I

Inport Block Mame

Ini TestCases (Ini)

be |

b Ldle

nherit from model
MNew Test Wector ... >

Defme test signed ne: ; TNeg Test Variable ... >
-TestCases
¥ Map test signal time to: ITestCase LInd]

" Manually specify a time step: IEI.EII

To calculate end time of simulation:

{+ Use model stop time

" Use signal's end time (based on TestCases { si

Override Block Parameters with SystemTest D

Override MATLAB and Model Workspace Varial

I

Run Signal Builder test cases from SystemTe %

VI

The Simulink element is configured to map the signal time to the test
vector signal’s time and to use the model stop time.

6-10

Generating the Test Harness from Simulink

6 Select the test vector in the Test Browser. The test vector is called
TestCases by default. If you want to change the name, type a new name in
the Name field on the General tab.

7 Click the Open Test Case Editor button on the Test Vectors pane to
see the test case and signals that were created from the model. By default,
the test case is called TestCase1 and the signals are named the same as
the Inport blocks in the model, as shown here. You can rename the test
case by double-clicking it in the Test Cases list.

e
Edit TestCases Signals Requrements Help
Add Test Case Signals | Requirements |
—|
Test Cases
TestCasel
1 —|' i _I" _I'.
01— "
]
o1 \ \ i i \ i i \ \ i
i] 1 2 3 4 & 6 7] 9 10
- Add Signal Add Bus
E-=n2
-z
t-al
Signal Propertis egment Propertis
MName : In1 Type : Jconstant
Data Type: double = Segment Duration {secs) : |10
Extrapolation Policy : (& Hold last value s a canstant Value : o0 D_‘_D:
. ! :
¢ Bring back to zero and hold \alue :
+——Segment Duralion———»

oK Cancel Help

The example model has two Inport blocks, which appear in the signal list in
the Test Case Editor. In1 is selected here and you can see that the signal

6-11

6 Generating a SystemTest Test Harness from a Simulink Model

6-12

was created using the same Data Type for that signal as the Inport block
had in the model, double in this case.

You can see in the signal list that the Inport block In2 is a bus and its two
signals are shown in the signal tree.

Signals that are created are of Type Constant, have a default Value of
0, and a default Duration of 10 seconds. You can change any of these
parameters by editing them in the Signal Properties or Segment
Properties.

When you are done working in the Test Case Editor, click the OK button.
Any additions or changes you made will be saved to the test vector.

Once you have created the test from your model as described here, you can
make additions or modifications to any part of it. You can add test cases or
signals in the Test Case Editor. You can add other elements to the test,
such as the General Plot element to plot your data.

9 Run the test.

Generating the Test Harness at the MATLAB® Command Line

Generating the Test Harness at the MATLAB Command Line

You can also create a SystemTest test based on a Simulink model by using the
command line. A test harness is created as described in the previous section,
but via the command line instead of from Simulink.

The resulting test that is automatically generated is configured for you and
the appropriate components of the test are created, including the Simulink
element and a Test Case Data test vector. For detailed information about the
resulting test, see “Generating the Test Harness from Simulink” on page 6-4.

The automatic test generation requires that the model contain root-level
Inports. If it does not, you will get an error message and a test harness will
not be created. There are also other conditions that apply to the root-level
Inports and the model. For a list of conditions to use this feature, see
“Prerequisites” on page 6-3.

You use the systest.createHarness function to create the test.
systest.createHarness(testFileName,modelName) creates a SystemTest
test harness named <testFileName> for the model <modelName>. The test is
set up with a Test Case Data test vector and a Simulink element using the
information from the Simulink model. The model must be on the MATLAB
path. The testFileName must be a writable file location.

The following example creates a test harness from a model:

>>modelName = 'C:\mymodel.mdl';
>>testFileName = 'C:\my_new_harness.test';

>>systest.createHarness(testFileName,modelName)

6-13

6 Generating a SystemTest Test Harness from a Simulink Model

6-14

Using the Instrument
Control Toolbox Elements

The Instrument Control Toolbox software provides several elements to use
in the SystemTest software.

® “Introduction” on page 7-2

e “Example: Measuring a Generator’s Frequency” on page 7-4

7 Using the Instrument Control Toolbox™ Elements

7-2

Introduction

In this section...

“Instrument Control Toolbox Elements” on page 7-2

“Accessing Resources” on page 7-2

Instrument Control Toolbox Elements

This chapter describes how to use the Instrument Control Toolbox elements
with the SystemTest software.

The Instrument Control Toolbox elements provide a way to bring data from
instruments into a SystemTest test, or to transmit data from your instrument.
You can use these elements along with the other elements in the SystemTest
software to create tests for Simulink models and other applications.

Note To use the Instrument Control Toolbox elements, you need a license
for the Instrument Control Toolbox software. These three elements will not
appear in the SystemTest software without this license.

The Instrument Control Toolbox software provides three of elements that you
can use in the SystemTest software:

® To Instrument — For sending commands or data to your instrument

¢ From Instrument — For reading data from your instrument

¢ Query Instrument — For querying your instrument status or properties
You can configure these elements to communicate with your instruments by

using SystemTest resources supported by the Instrument Control Toolbox
software.

Accessing Resources

If your MATLAB installation includes elements that require resources, the
SystemTest desktop includes a Resources pane that lets you access the

Introduction

resources available through these toolboxes. For example, if your MATLAB
installation includes the Instrument Control Toolbox software, you can

see the Resources pane, if you open it from the Desktop menu. Select
Desktop > Resources to open the pane. It will tab with the Test Vectors
and Test Variables on the lower-left corner of the desktop. Resources are
toolbox-specific. For example, an Instrument resource might be configured to
connect to a device over your computer’s serial port.

7-3

7 Using the Instrument Control Toolbox™ Elements

Example: Measuring a Generator’s Frequency

In this section...

“Introduction” on page 7-4

“Setting Up the Signal Generator” on page 7-5

“Setting Up the Oscilloscope” on page 7-9

“Taking the Measurement” on page 7-11

“Saving Test Results” on page 7-12

“Running the Test and Viewing Test Results” on page 7-13

Introduction

To illustrate how to use some of the Instrument Control Toolbox elements in
the SystemTest software, this section provides a step-by-step example.

In this example a SystemTest element configures a signal generator to
produce signals of various frequencies, which are measured by an oscilloscope
configured by other SystemTest elements.

The signal generator is a Hewlett-Packard 33120A at GPIB address 5, and
the oscilloscope is a Tektronix TDS 210 at GPIB address 4. For this example,
the generator output is fed directly to the scope input. The generator will

be programmed to generate signals of 1500, 5000, and 7500 Hz, while the
oscilloscope will measure each signal’s frequency.

The following sections explain the steps in this example.

Example: Measuring a Generator’s Frequency

Setting Up the Signal Generator

The first element in the test programs the generator to output signals of
various frequencies. To test at three frequencies, the test be comprised of
three test cases, 1.e., three iterations. This is a one-way communication to the
generator, so you use a To Instrument element.

1 Open the SystemTest software from MATLAB by selecting Start >
MATLAB > SystemTest > SystemTest Desktop. You can also just type
systemtest at the MATLAB command line.

2 No setup is required in the Pre Test, so the elements of this test are all in
the main test, so click Main Test in the Test Browser.

3 Add an element by clicking New Test Element > Instrument Control >
To Instrument.

* 3| x|
Test Elemert » [EENNIE
. Test Vector . Lirnit Check.
FH Test variable #| MaTLAB
T Saye Rl Scalar Plot
~Post Test | Simulink
Test Yectol 0 Stop
L EH Test Yariak Eg’;;g Subsection
Yeckor Plok
4\ Data Acquisition]
4\ Image Acguisition k
=} Instrument Control @ From Instrurment
@ Query Instrument

| Mew -

The element appears in the browser as To Instrument.

4 Double-click To Instrument, rename it Set Generator, and press Enter.

7-5

7 Using the Instrument Control Toolbox™ Elements

5 From the Properties pane’s Select an instrument resource list,
select New Instrument Resource. The instrument resource is the
communication channel between MATLAB and your instrument, in this
case the generator at GPIB address 5.

6 In the Edit: Instrumentl dialog box, enter Generator in the Name field.
7 Click Create to create an instrument resource.

8 In the New Object Creation dialog box, select GPIB in the Instrument
object type list. Select the appropriate Vendor (in this example, ni
for National Instruments), Board index (0), and instrument Primary
address (in this example, 5).

#): Hew Object Creation

~Define okject

Instrument ohject type: I GPIE

L]

rConfigure object crestion

wenhdar: I ull ﬂ
Board index: 'J LI
Pritnary address: E ﬂ

ik I Cancel |

9 Click OK to return to the Edit: Instrument1 dialog box, where the
instrument object is now filled in and selected for this resource (GPIBO-5).

7-6

Example: Measuring a Generator’s Frequency

Editing: Instrument1 |

Marne:

IGeneratDr

Instrument Chject

Select an instrurnent object for this resource.

0134 | Cancel |

10 Click OK to apply this resource and return to the Properties pane in the
SystemTest desktop.

11 In the Command text field, enter frequency followed by a space to
separate the text from the variable that will follow. This is the command to
set the frequency of the 33120A generator, as described in the instrument’s
reference manual proved by the vendor.

12 Click Data source and select New Test Vector. The name of the vector
you create for setting the generated frequencies is called genfreq. In the
Insert Test Vector dialog box, enter that text in the Name field, and set the
Expression field to [1500 5000 7500], including the brackets.

7-7

7 Using the Instrument Control Toolbox™ Elements

J Insert Test Yector x|

Select Test Yector bype:

n
Probability Distribukion
Spreadshest Data

General I Grouping |

Marne; Igenfreq

Type: IM.C\TL.C\B Expression

Expression:

Tesk Wector successfully evaluated ko a 1x3 double

[~ Evaluate Test Yectar each time the test is run

o4 Zancel

13 Click OK to return to the SystemTest desktop.

Notice that the Main Test node in the tree now says (3 Iterations).
Because you entered three values in the test vector, the test is comprised of
three iterations, one for each frequency value in the test vector.

14 Keep the Send variable data as setting as String. The generator is
expecting string values for its commands.

15 Set a pause value of 2 seconds. This allows the generator to settle before
you measure its output.

The element should now resemble the following figure:

Example: Measuring a Generator’s Frequency

Tesk Browser 0 A x | Prop 5 - Set Gen tor
| Mew Test Element = f ' | b4 | ~Inskrument resource
S-Untitled Select an instrument resource:
}-----Pre Test I Generatar LI
[=1-Main Test (3 Iterations) ~Message data and Format
Sek G k
@l} = seneratr Message data: frecuency <genfrecg:
Save Results
‘...Post Test Command text:
|Frequency
Data source:
I genfreq LI
Send wariable data as:
I Skring LI
Pause after sending data {seconds):
Iz
Test Vectors 1+ [2 x TeskVariables | Resources
| Mewi. ., | Edit... | + 3§ | g |
Mame Expression Weckor Iterations | Grouped
genfreq [1500 5000 7500] |[1500 5000 7500] 3 -

Setting Up the Oscilloscope

You use a To Instrument element, which provides a one-way communication
to the oscilloscope, to program the scope to measure frequency.

1 Add an element by clicking New Test Element > Instrument Control >
To Instrument.

7-9

7 Using the Instrument Control Toolbox™ Elements

2 Double-click To Instrument in the tree, rename it Set Scope, and press
Enter.

3 As before, create a new instrument resource, but this time call it Scope.
Create a new instrument object for it using Board index 0, and GPIB
primary address 4.

4 For the command text, enter measurement:immed:type frequency. This
puts the scope in the frequency measurement mode, as described in the
instrument’s reference manual provided by the vendor.

There is no test variable or pause required for this element, so the element
looks like the following figure:

«): SystemTest - Untitled.test™

File Run Toolz Desktop Window Help

OO0 e 8| 2|l = &
|NewEIement' ' G | X | rInstrument resource
=-[_] untitled Select an instrument resource:
IScope LI
C-terations (3)
H E---MainTest rMessane data and format

Message dats: measurement : imwed: type frequency

Command texdt:

‘Save Results
“-Post Test

Imeasuremem:immed:type frequency

Data source:
| |
Send variable data as:
I String LI
Pause after zending data (seconds):

Test Vectors A X I

|New|Ed‘rt...|ﬁ* 3 |§' |

| Mame Wectar Walues terations

| genfreg |[1500 5000 7500] ([1:500 5000 7500] &)

Test Wectors | Test Variables | Resources

To see the resources you created for communications with your two
instruments, click the Resources tab at the bottom of the SystemTest

7-10

Example: Measuring a Generator’s Frequency

window. You can see the Generator and Scope resources, along with
their GPIB settings.

o Mgy v gy, Pt Yy Vg

Test Wectors | Test Wariables I Resources I

2

*

Resources C 4 IPB
|New' Ed‘rt...|‘l‘ §|§|"‘| ‘.
Mame Resource ldentifier 1

(=) Generator GPIED-5 b
=) scope GPIE0-4 ;
f

»

-4

)

Taking the Measurement

With the generator and scope set up, you can take the measurement with the
scope using a Query Instrument element, which sends the command to the
scope for taking the measurement.

1 Add an element by clicking New Test Element > Instrument
Control > Query Instrument.

2 Double-click Query Instrument in the tree, rename it Measure with
Scope, and press Enter.

3 Use the existing instrument resource called Scope, by selecting it in the
Instrument resource list.

4 Enter the command to query for a measurement by typing
measurement:immed:value? in the Instrument query command field.

5 Select Store complete response, and select the Empty input buffer
after read check box.

6 From the Interpret data as list, select String (this scope returns ASCII

strings), and select the Convert string value to a numeric result check
box.

7-11

7 Using the Instrument Control Toolbox™ Elements

7-12

7 From the Assign data to list, select New Test Variable. For the

oscilloscope’s frequency measurement, name the test variable scopefreq.

It needs no initial value.

The element now looks like the following figure:

«): SystemTest - Untitled.test™

File Run Toolz Desktop Window Help

Ol e 8| 2|l

Test Browser

t 3| x|

| Mewe Element ~

=) untitled

- Main Test
@ Set Generator
@ Set Scope

5@

rInstrument resource

Select an instrumert resource:

I Scope

|

Euery command

Instrument query command:

Imeasuremem:immed:value?

V' Corwert string value to a numetric result

Q Measure with Scope .
Reading data
------ Save Results
i..post Test & Store complete response

' Remove the followving header
' Mumber of bytes to remove from start of response

e Manahles ’ il Empty input butfer after read

New * | Edt.. | 5
| = et t G ?x r~Data farmat
Marne Initial *alue Azzighed In Interpret data as:
HH scopetreg Main Test I String LI

Azzign data
Azsign data to:

Test Wectors I Test Yariables I Resources I

I scopefrey

LA 8l Properties - Measure with Scope A X

Saving Test Results

To view the results of your test, you must first specify the test variables you

want to save as test results. This is done in the Save Results Properties

pane.

1 Click Save Results in the test browser tree.

Example: Measuring a Generator’s Frequency

2 In the Properties pane, click New Mapping.

3 From the Test Variable list, select scopefreq. This test variable contains
the frequency measurements provided by the oscilloscope during each Main

Test iteration, as shown in the following figure:

| Properties - Save Results

—Map Test Yariables to Resulks

with saved test resulks,

o

Specify the test variables you want to save at the end of each Main Test iteration by
mapping a test variable to a test result name.,

Moke, kest veckors do not need to be specified. By default, they are made awvailable

MNew Mapping | "‘ lr | a‘x |

Test Yariable

Result

scopefreq

[

scopefreq

Running the Test and Viewing Test Results
Now that the test elements are all created, you can run the test.

1 Run your test.

2 When the test is complete, click on the link in the Run Status pane to

display your test results.

3 To see the measurement results, at the MATLAB prompt type

format short g
scopefreq
scopefreq =
1501.5
5000
7500

7-13

7 Using the Instrument Control Toolbox™ Elements

This verifies that the signal generator is producing the expected signal
frequencies.

7-14

Using the Data Acquisition
Toolbox Elements

The Data Acquisition Toolbox software provides several elements to use in the
SystemTest software.

® “Introduction” on page 8-2

e “Example: Testing a Voltage Regulator” on page 8-3

8 Using the Data Acquisition Toolbox™ Elements

8-2

Introduction

In this section...

“Overview” on page 8-2

“Data Acquisition Toolbox Test Elements” on page 8-2

Overview

This chapter describes how to use the Data Acquisition Toolbox elements
with the SystemTest software.

The Data Acquisition Toolbox elements provide a way to bring analog and
digital data from a data acquisition device into a SystemTest test, or to
send analog or digital data from your device. You can use these elements
along with the other elements in the SystemTest software to create tests for
Simulink models and other applications.

Note To use the Data Acquisition Toolbox elements, you need a license for
the Data Acquisition Toolbox software. These four elements will not appear
in the SystemTest software without this license.

Data Acquisition Toolbox Test Elements

The Data Acquisition Toolbox software provides four elements that you can
use in the SystemTest software:

Analog Input — For reading analog data from your data acquisition device

Analog Output — For sending analog data to your data acquisition device

Digital Input — For reading digital data from your data acquisition device

Digital Output — For sending digital data to your data acquisition device

You can configure each test element to communicate with your data
acquisition devices for sending or receiving digital or analog data.

Example: Testing a Voltage Regulator

Example: Testing a Voltage Regulator

In this section...

“Introduction” on page 8-3

“Sending Analog Stimulus Data to the DUT” on page 8-4
“Enabling the DUT with Digital Data” on page 8-7
“Receiving Analog Response Data from the DUT” on page 8-9
“Disabling the DUT with Digital Data” on page 8-10
“Performing Data Analysis” on page 8-12

“Defining Post Test Elements” on page 8-13

“Saving and Viewing Test Results” on page 8-14

Introduction

To illustrate how to use some of the Data Acquisition Toolbox test elements in
the SystemTest software, this section provides a step-by-step example. The
example shows how to use the elements that send data to a device under test
(DUT) and receive data from a device under test, using both analog channels
and digital lines.

This example samples the response of a 5-V voltage regulator that is
stimulated with three different voltages of 4, 5, and 7.5 volts. The regulator
has an enable function controlled by a digital signal. In this example, you
collect 22,000 samples per second of the DUT response for 2 seconds.

All data going to and from the DUT is handled by a National Instruments®
PCI-6035E data acquisition card. The example uses this card’s analog output
for the DUT stimulus, analog input for capturing the DUT response, and
digital output for controlling the DUT’s enable line. The test configuration is
shown in the following figure:

8 Using the Data Acquisition Toolbox™ Elements

National Instruments

PCI-6035E

Analog Output
HW Chan 0

Sl‘lmU'US: DUT Response »| Analog Input
HW Chan 3

Digital Output
Enable Port O, Line 3

The following sections contain the steps in this example.

Sending Analog Stimulus Data to the DUT

Stimulus data is sent to the DUT from an analog output channel of your
data acquisition card.

1 Open the SystemTest software in MATLAB by selecting
Start > MATLAB > SystemTest > SystemTest Desktop. You can also
type systemtest at the MATLAB command line.

2 This example does not use the Pre Test section, so select the Main Test
section in the Test Browser pane.

3 Add an Analog Output element by selecting New Test Element > Data
Acquisition > Analog Output.

Example: Testing a Voltage Regulator

| Test Browser

Test Element b [EENIE

) Test Veckor fit] Limit Check
EH Tesk Variable ﬂ MATLAB
T Save Ru|-"] Scalar Plot
- Post Test @J Sirnulink:

-) Test ¥ector 0 Stop

...... EH Test 'q'anal: 8 Subsection
¢ “ector Plok
| [aka Acquisition F# Analog Inpuk
4\ Image Acquisition | B Analog Output
4\ Instrument Control & Cigital Tnput k

15 Digital Sutput

The new element appears in the browser tree, and its properties appear
in the Properties pane. The SystemTest software scans your computer
for installed data acquisition adaptors and devices. This can take several
seconds.

4 Double-click the new Analog Output node in the browser tree, and enter a
new name for this element, such as Stimulate DUT.

5 Since we have three test cases, we need to create a test vector containing
the three voltage settings to test against. Click the Test Vectors tab. The
voltage values for the stimulus to the DUT are held in a test vector. Click
New Vector to create a new test vector.

6 In the Insert Test Vector dialog box, click the name TestVector1 and enter
a new name for your vector, such as DUTstimulus.

7 Click the default1 : 1 : 10 entry in the Expression field, and replace
it with the values for your test: [4, 5, 7.5] (be sure to include the
brackets) and click OK. Notice that because there are three values in your
vector, the browser tree now indicates that the Main Test will run three

8-5

8 Using the Data Acquisition Toolbox™ Elements

8-6

iterations. Each iteration will use one of the three values in the vector for
the DUT stimulus voltage.

8 In the Properties pane, select the adaptor and device to use for the test.
This example uses the nidaq adaptor, and the device is a PCI-6035E.

9 The example hardware configuration uses the card’s analog output
hardware channel 0 to provide the DUT’s stimulus. So select the check box
for this channel. The element will generate signals of 4, 5, and 7.5 volts, so
keep the default output range of [-10.0 10.0].

10 From the Data source list, select the DUTstimulus test vector.

11 Enter a value of 1 for Output rate. You are using a single static value
rather than a sampled waveform, so this is not critical.

12 Enter a value of 1 for Number of times to output data. The card will
hold its last programmed value, so you need to send it only once.

Example: Testing a Voltage Regulator

The Properties pane now looks like the following figure:

«): SystemTest - Untitled.test™

File Run Toolz Desktop Window Help

o0

CHEER 1A

Test Browser

| Mewe Element ~

* 3| x|

LA Sl Properties - Stimulate DUT A X

=-[_] untitled

Test Vectors A X
|New|Ed‘rt...|‘!‘ §|§'x|

| Mame Wectar Walues tterati...
| DUTstimulus |[4, 5, 7.5] [457.5] 3
Test Wectors | Test Varisbles | Resources

5@

Select Hardware:

Adaptar:

| nickag

Device:

|

| Devz (PCI-6035E)

|

H Channel

Cutput Range

[-10.010.0]

[l i
[} 1

[-10.010.0]

Select Al

Unselect Al

Data source:

| DUTstimuius

Output rate (Samplesisecond):

f

The actual output rate will be 1.

Murnber of times to output deta:

f

Enabling the DUT with Digital Data

To send a digital enable signal to the DUT, use a digital output element.

1 Select New Test Element > Data Acquisition > Digital Output.

2 Double-click the new Digital Output element in the browser tree, and type

a new name for this element, such as Enable DUT.

3 Click the Test Variables tab.

4 Click the New button to create a new variable. You will create two
variables: one for enabling and one for disabling the DUT.

5 Click the name Var1, and replace it with the text DUTenable.

8-7

8 Using the Data Acquisition Toolbox™ Elements

8-8

6 Click its empty Initial Value entry, and enter 1.

7 Repeat steps 4 to 6 to create a second test variable, but name it DUTdisable
with an initial value of 0.

8 In the Properties pane for the Enable DUT element, select the adaptor
and device for sending this data. Again, you are using the nidaq adaptor,
and the device is a PCI-6035E.

9 The hardware configuration uses the card’s digital output port 0, line 3 for
the enable signal, so select the check box for this line.

10 From the Data source list, select the variable DUTenable.

The Properties pane now looks like the following figure:

«): SystemTest - Untitled.test™

File Run Toolz Desktop Window Help
Oellcd e 8| 2| L ®
Test Browser LA 8l Properties - Enable DUT A X
|Nev\fEIemer‘ﬂv + 2 | 4 |
Select Hardware:
=-[_] untitled
, Pre Test Adaptor:
- iterations (3} |nidaq =
: Device:
| bevz (Pel-6035E) =]
Part Line
r i i
r i 1
r i 2
7 i 3
r i 4
Test Variabl: E 4 | 0 5
est Variables - o 5
|New' Ed‘rt...|‘l‘ lr|§|"‘| O 0 7
[Marne Initial *alue Azsigned In
HH outensbe | Main Test
HH outdisakie [0 Wair Test
Select Al Unselect Al
Data source:
| DUTenable |
Test Wectors I Test Yariables I Resources I
4

Example: Testing a Voltage Regulator

Receiving Analog Response Data from the DUT

The next element in the test samples the output from the DUT and assigns
the acquired data to a test variable.

1 Select New Test Element > Data Acquisition > Analog Input.

2 Double-click the new Analog Input element in the browser tree, and enter
a new name for this element, such as DUT Response.

3 In the Properties pane, select the adaptor and device to use for the test.
This example uses the nidaq adaptor, and the device is a PCI-6035E.

4 The hardware configuration uses the card’s analog input hardware
channel 3 to read the DUT’s response, so select the check box for this
channel. The expected signal will be about 5 volts, so keep the default
output range of [-10.0 10.0].

5 Set a sample rate of 22000. Because of hardware limitations, the actual
sample rate may not exactly match the value you specify.

6 In the Acquire field, specify to acquire data for 2 seconds. Set seconds in
the unit list to the right of the value field.

7 In the Assign data to field, select New Test Variable from the list. This

is where you specify what test variable to assign the acquired data to. The
Edit dialog box appears.

Editing: Varl |

Marne

I\-’ar1

Initial vwalue

friand

Aszigned in
[iin Test

Cancel |

8 Using the Data Acquisition Toolbox™ Elements

8-10

8 Enter a name for the test variable, such as DUTresponse, then click OK
to create the test variable.

The Properties pane now looks like the following figure:

: SpstemT est - Untitled_test™

Fil= Run Toolz Desklop ‘Window Help

IEEEIEEE IR = ®

| Mewy Element ~

t & | x|

~Select Hardware:
=] untitled
| Adaptor:

| niciag LI

Device:
| Deva2 (PCI-G03SE)

=

Save Results = HA Channel Ihput Range
. Post Test 0 [-0.05 0.05] -|
r 1 [-0.05 005
[2 [-0.05 0.05]
v 3 [-0.05 005
r 4 _0.05 005
= d (305 B0 =
lEstilaniahics X Select Al Unselect Al
|New- Ed'rt...‘f L ‘?“
— - Sample rate (Samplesizecond):
Mame Initial %alue Azzigned In
0 : 22000
! LTS The actual sample rate will be 22,002.2.
A outdisane |0 in Test ,
Acouire:
HH DUTresponze lizin Test
|2‘ Seconds | * I

44,004 data pointz will be acquired.
Aszigh data o

| DUTresponse LI
Test Vedorsl Test Variab|eg| Resources I

Disabling the DUT with Digital Data

The next step is to disable the DUT with a digital output element that turns
off the DUT’s enable line. This element is similar to the Enable DUT element,
except 1t sends a different value to the DUT.

Example: Testing a Voltage Regulator

1 Select New Test Element > Data Acquisition > Digital Output.

2 Double-click the new Digital Output element in the browser tree, and
enter a new name for this element, such as Disable DUT.

You already created the test variable DUTdisable, which you will use in
this element.

3 In the Properties pane for the Disable DUT element, select the adaptor
and device for sending this data. Again, you are using the nidaqg adaptor,
and the device is a PCI-6035E.

4 The hardware configuration uses the card’s digital output port 0, line 3 for
the enable signal, so select the check box for this line.

5 From the Data source list, select the variable DUTdisable.

8-11

8 Using the Data Acquisition Toolbox™ Elements

8-12

The Properties pane now looks like the following figure:

«): SystemTest - Untitled.test™

File Edit Run Toolz Deskiop ‘Window Help
ool e 8| 2| =&
Test Browser # X |Properties - Disable DUT A X
|Nev\fEIemer‘ﬂv + 3 | 4 |
Select Hardware:
=) untitled
H Adaptor:
| nickag LI
Device:
| bevz (pel-603sE) =]
F_é? DUT Response
if} Disable DUT Port Line
~Gave Results O o o
...... Post Test] 0 1
r i 2
~ i 3
O i 4
r i 5
Test Variables A X] 0 5
|New' Ed‘rt...|‘l‘ l-|§|"‘| r U i
[Marne Initial %alue Azsigned In
HH outenabie |1 Main Test
HH outdisable [0 Main Test
EH DUTresponse Main Test
Select Al Unselect Al
Data source:
| DUTdisable |
Test Wectors I Test Variablesl Resources I
4

Performing Data Analysis

At this stage, you might perform any analysis or visualization routines on the
data generated by the DUT. You can do this in a MATLAB element.

1 Select New Test Element > MATLAB.

2 Double-click the new MATLAB element in the browser tree, and enter a
new name for this element, such as Process Data.

3 In the MATLAB Script edit field of the Properties pane, enter any
MATLAB code that you need for analyzing your test variables. You
might be interested in measuring ripple, noise, regulation, or many other

Example: Testing a Voltage Regulator

characteristics. You can access the DUT response by referring to the test
variable DUTresponse. The stimulus data is available in the test variable

DUTstimulus.

The following figure shows a MATLAB element with only some comments
added in the Properties pane.

«): SystemTest - Untitled.test™

File Run Toolz Desktop ‘Window Help

OO0t s &| 2|l 2| =
Test Browser LA 8l Properties - MATLAB
|NEWE'emem' LI | X | MATLAE Seript
E"":j Untitled 1 % Thiz iz & MATLAE element, used to
Pre Test 2 5 analyze the DUT stimulus and
Ef""“?fﬂﬁﬂns (3 3 % response test wvariables.
: -Main Test
B stimulste DUT

~Save Results

------ Post Test
Test Variables A X
|New' Ed‘rt...|‘l‘ L |§|"‘|
[Marne Initial %alue Azsigned In
HH outenabie 1 Main Test
HH outdisable [0 Main Test
EH DUTresponse Main Test

Test Wectors I Test Variablesl Resources I

Defining Post Test Elements

In this example, it is recommended to include an element in the Post Test

section to disable the DUT.

1 Click the Post Test section in the browser tree.

2 Create a digital output element set up like the element you made in
“Disabling the DUT with Digital Data” on page 8-10.

8-13

8 Using the Data Acquisition Toolbox™ Elements

With the extra Disable DUT element, the test now looks like the following
figure:

«): SystemTest - Untitled.test™

File Run Toolz Desktop ‘Window Help
ool e 8| 2| L&
Test Browser LA 8l Properties - Disable DUT A X
|Nev\fEIemer‘ﬂv + 3 | 4 |
Select Hardware:
=) untitled
H Adaptor:
|nidaq LI
Device:
| Devz (PCI-6035E) |
Part Line
r i i
r i 1
‘Save Results] o 5
Post Test [0 3
o pifl Disable DUT = 0 3
- O 0 5
Test Variables A X - 0 &
|New' Ed‘rt...|‘l‘ l-|§|"‘|] 0 7
[Marne Initial %alue Azsigned In
HH outenabie |1 Main Test
Select Al Unselect Al
HH outdisable [0 Main Test
EH DUTresponse Main Test Data source:
| DUTdisable |
Test Wectors I Test Variablesl Resources I
4

The Post Test section of the test could also perform any analysis that requires
completion of all the iterations of the Main Test.

Saving and Viewing Test Results

Before running a test, you must specify which test variables you want to save
as a test result. In the Save Results Properties pane, you select the test
variable that you want to save and map it to a test result name.

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

8-14

Example: Testing a Voltage Regulator

For more information, see Chapter 12, “Accessing Test Results from the
MATLAB Command Line”.

8-15

8 Using the Data Acquisition Toolbox™ Elements

8-16

Using the Image Acquisition
Toolbox Element

The Image Acquisition Toolbox software includes a SystemTest element that
you can use to bring live video data into a SystemTest test.

® “Introduction” on page 9-2

¢ “Example: Acquiring Video Data in a Test” on page 9-3

9 Using the Image Acquisition Toolbox™ Element

9-2

Introduction

This chapter describes how to use the Image Acquisition Toolbox element
with the SystemTest software.

The Image Acquisition Toolbox element, called Video Input, provides a way
to acquire live video data in a SystemTest test. You can use this element
along with the other elements in the SystemTest software to create tests for
Simulink models and other applications.

To learn how to use the Image Acquisition Toolbox element in the SystemTest
software, see “Example: Acquiring Video Data in a Test” on page 9-3.

Note To use the Image Acquisition Toolbox element, you need a license for
the Image Acquisition Toolbox software. The Video Input element will not
appear in the SystemTest software if you do not.

Example: Acquiring Video Data in a Test

Example: Acquiring Video Data in a Test

In this section...

“Adding the Video Input Element to a Test” on page 9-3
“Saving and Viewing Test Results” on page 9-8

“Running the Test” on page 9-9

Adding the Video Input Element to a Test

This example illustrates how to use the Video Input element in the
SystemTest software. The example uses the Video Input element to acquire
a single frame of video for each iteration of the test and uses the MATLAB
element to display the acquired image.

The first step is to add the element, as shown in this section. The two
following sections contain the remaining steps.

To create a test using the Video Input element:

1 Open the SystemTest software by selecting Start > MATLAB >
SystemTest > SystemTest Desktop in MATLAB. You can also just type
systemtest at the MATLAB command line.

2 In the SystemTest desktop, start to create your test by selecting Main Test
and adding the Video Input element. In the Test Browser, click New
Test Element > Image Acquisition > Video Input.

9 Using the Image Acquisition Toolbox™ Element

9-4

| Test Browser

* 3| x|
Test Element b EEa

Test Weckar Limit Check
Eﬂ Test Yariable “&J MATLAE

T Save R |- Scalar Plot
E......Pust Test Sirnulink:
] Test Yectol &3 Stop
-.FH Test variat 78 Subsection
YWector Plok

4\ Data Acquisition

| Mew -

A Image Acquisition
4\ Instrument Contral

¥
&2 Video Input

| L%

The SystemTest software adds the Video Input element to the Main Test
section of the test and displays the Properties pane for the Video Input
element. (You can also add elements to the Pre Test or Post Test sections of
a test but this example does not require it.)

In the following figure, note the red x in the Video Input element icon in
the Test Browser. This red x indicates that the element is in an error
state. The SystemTest software outlines the required fields in red in the

Properties pane.

Example: Acquiring Video Data in a Test

. -
Test Browser LWl Properties - Yideo Input E 4
| New Element ~ | 9 & | b4 |
~lrage Acouisition Device
= g untitied
;*""Pre Test Adaptor:
I Mterations {1) |WimfidED =l
| E-Main Test Devio
£ iden Input EvieE:
- Save Results | 1 (BM PC Camers) Rd
“Post Test “idea Format:
| RGBSS5_126x96 =]
Selected Source:
| inputt Rd
Test ¥ariables LI 4 Eirenizs il |
| Mew = | Edit.. | + 3 | = |
Matne I Initial “alue I Azsigned In |
Mumber of frames:
il
Aszign data to;
| |

3 Specify the device you want to use to acquire image data in the Properties
pane for the Video Input element. You must specify the name of the
adaptor you want to use in the Adaptor field, which is a required field.
(The SystemTest software uses red outlining to indicate required fields
that are not filled in yet.) The SystemTest software can detect any image
acquisition devices supported by the Image Acquisition Toolbox software
that are connected to your system and fills in this field with a default
value based on the alphabetical list of devices, if one is available. For our
example, in the figure, the SystemTest software sets the Adaptor field to
winvideo. If your system has other adaptors that can connect to devices,
select the adaptor that you want to use from the Adaptor list.

After the Adaptor field is set, the SystemTest software fills in the Device,
Video Format, and Selected Source fields with default values. The
SystemTest software populates the drop-down lists associated with each
field with all available options for the field. Adaptors can support multiple

9 Using the Image Acquisition Toolbox™ Element

devices and devices can support multiple formats. The SystemTest
software preselects the default values for these fields but lists all available
options in the drop-down lists associated with these fields. The following
figure shows the list for the Video Format field:

=) Properties - Yideo Input ol x|

Flmage Acyuisition Device

Acaptar:

| weinvideo ﬂ
Device:

| 1 (IEM PC Camers) LI
“ideo Format:

Selected Source:

gLt |
Preview Wincow |

Mumber of frames:
fi
Azsign data to:

I =l

4

4 Specify the number of frames you want to acquire at each iteration of the
test in the Number of frames field, which is a required field. For this

example, we only need to acquire one frame for each iteration, so set this
field to 1.

5 Specify the name of the SystemTest test variable that the acquired video
data will be assigned to at each iteration. This is a required field. You can
select a test variable from the list or create a new test variable by selecting
New Test Variable.

9-6

Example: Acquiring Video Data in a Test

Azsign data to:

If you select New Test Variable, the SystemTest software opens the Edit
dialog box. Assign a name to the test variable, or accept the default name,
and click OK. You do not need to assign the test variable an initial value.

Editing: ¥ar1l x|

Marme

I\f’ar']
Initial value
Azsigned in

i T2t

Cancel |

The SystemTest software adds the new test variable to the list in the Test
Variables pane.

6 Optionally, verify the Video Input element settings by clicking the Preview
Window button. The SystemTest software opens a Video Preview window
and displays a live video stream from your camera. You can use this to
verify that your hardware is configured correctly. You should close the
preview window before running the test.

7 To complete this example test, add a MATLAB element to the Main Test
section. In this MATLAB element, call the MATLAB image function to
display the image frame acquired at each iteration.

9-7

9 Using the Image Acquisition Toolbox™ Element

9-8

Test Browser Ll Properties - MATLAB A X
| ez | 1 | X | MATLAE Script
Ej Untitled 1 image [Var1]|

----- Pre Test
- tterations (1)

i ~Save Results

“--Post Test
Test ¥ariables E 4
|New' Ect... | + 3 | E |

Matrie Initial alue Assigned In
HH a1 izin Test

Test YWectors I Test Yariakles I

This completes this example test illustrating how to incorporate image data
into the SystemTest software. In a real testing application, you can define
test vectors that determine the number of iterations of your test that the
SystemTest software performs. You can also compare test variables against
defined limits in the Limit Check element and specify pass/fail criteria.

Saving and Viewing Test Results

Before running a test, you must specify which test variables you want to save
as a test result. In the Save Results Properties pane, you select the test
variable that you want to save and map it to a test result name.

Example: Acquiring Video Data in a Test

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

For more information, see Chapter 12, “Accessing Test Results from the
MATLAB Command Line”.

Test Browser A X |Properties - Save Results A X
| Mewr Blemert ~ f ‘ | X | ~Map Test Wariables to Results
= Untitled F
j & | I Mapping | f ‘N gl'x |
;-""Pre Test
E---'terations 0] Test Yarishle Resutt
. [F-Main Test warl = [vart
g video Input
LA marLag
Save Results
“Pogt Test

Running the Test

To run the test, do one of the following:

¢ (Click the Run button.
e Select Run > Run.
® Press the F5 key.

While the test executes, the SystemTest software reports on the progress
of the test in the Run Status pane.

9-9

9 Using the Image Acquisition Toolbox™ Element

9-10

Distributing Tests Using
Parallel Computing Toolbox
Integration

* “SystemTest Software and Parallel Computing Toolbox Integration” on
page 10-2

e “Enabling Distributed Testing” on page 10-3

e “Selecting a User Configuration” on page 10-5

e “Setting Up File Dependencies” on page 10-7

e “Setting Up Path Dependencies” on page 10-9

e “Distributing Iterations Across Tasks” on page 10-12
¢ “Running a Distributed Test” on page 10-14

e “Example: Distributing a Test” on page 10-17

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

10-2

SystemTest Software and Parallel Computing Toolbox

Integration

You can distribute SystemTest tests across multiple computers or processors.
You can set up a test and then distribute Main Test iterations as tasks, which
are performed concurrently by different workers. This can help speed up the
total time the test takes to execute.

Note To distribute tests in the SystemTest software, you need a license for
the Parallel Computing Toolbox™ software.

You set up a distributed test as you would set up any test, using the
SystemTest desktop. Then you use the Distributed tab on the Test
Properties pane to set up the test distribution.

To access the distributed testing functionality in the SystemTest software, do
one of the following:

® Select your test name in the Test Browser. This is the top node in the
Test Browser, that lists the name you give the test when you save it, or
“Untitled,” if you have not saved it yet. Then click on the Distributed
tab in the Test Properties pane.

® Select Tools > Distributed Testing on the SystemTest menu. This opens
the Distributed tab.

Note that if you do not have the Parallel Computing Toolbox software
installed, the tab displays a message indicating you cannot use the distributed
testing functionality.

Note To see a diagram that shows how distributed testing with the
SystemTest software works and illustrates the relationship between the
SystemTest software, the scheduler, and the workers, see “Running a
Distributed Test” on page 10-14.

Enabling Distributed Testing

Enabling Distributed Testing

You must select the Enable Distributed Testing check box to distribute a
test. Once enabled, the rest of the fields on the Distributed tab are activated.

The check box is not enabled by default on new tests. However, once you
have set up a distributed test, if you save and close a test with the check box
enabled, it will reload in the enabled state.

The Main Test node on the Test Browser indicates if your test is set up to
be distributed. For example, if you have a distributed test containing 60
iterations, the node displays Main Test (60 Iterations) — Distributed, as
shown in the following figure.

10-3

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

10-4

Test Browser A X

| Mew -

t 8| x|

=-Simple_Demo

= ----- Pre Test

Ifﬂ---Main Test {60 Iterations) - Distributed
ﬂ Create Scalar Data

Scalar Limit Check,

[+*+] Plat Scalar Daka

i ‘-Save Results

E ~Post Test

Test Yectors

-signal
- Test variables

| Test variables

General

[+ Enable Distributed Testing

User Configuration

f+ Default (local)

. I Iozal :I

File Dependencies I Path Dependencies |

Files or folders to be copied to the worker machines

<Double-click ta enter or browse to create File Dependencies = Delete |

Italicized entries are dependencies from the User Configuration and cannot be
edited

Distribution of main test runs across kasks
Caloulated using &0 ikerations

(% Defaulk (2 iterations per task, 30 tasks)
9 |1 iterations per bask, 60 tashs

Selecting a User Configuration

Selecting a User Configuration

You or an administrator must set up a user configuration in the Parallel
Computing Toolbox software before distributing tests in the SystemTest
software. The user configuration determines certain administrative options,
such as what scheduler is used. You can use the MathWorks job manager
that comes with MATLAB® Distributed Computing Server™, and the local
scheduler that comes with the Parallel Computing Toolbox software. You can
also use a third-party scheduler, such as Windows CCS, Platform Computing
LSF, mpiexec, or a generic scheduler.

In the User Configuration field on the Distributed tab, select the user
configuration that will be used when you distribute tests.

¢ The Default option indicates the configuration that is designated as the
default in the Parallel Computing Toolbox software. The name of the
configuration appears in parentheses.

e If you have any other configurations defined, they will appear in the
drop-down list under Default. Either use the default, or click the second
radio button and choose a user configuration from the list.

10-5

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

In the following example, this user has several different schedulers and has
a separate user configuration for each scheduler. In this example, the user
configurations are named for the schedulers they use.

| Properties - Simple_Demo A x
General Distributed |

[+ Enable Distributed Testing

Iser Configuration

" Default {local)

v I jobrnanager

IsF
oS
File| generic
mpiexec
local

File

User configurations contain other information in addition to scheduler
selection, and are used to define other distributed computing parameters. See
Programming with User Configurations in the Parallel Computing Toolbox
documentation for details on setting up the user configuration.

If you load a test containing a user configuration that no longer exists, this

option will be in an error state. You can correct the error by selecting a valid
user configuration.

10-6

Setting Up File Dependencies

Setting Up File Dependencies

Use the File Dependencies table to indicate files or folders of files to be
copied to the worker machines. If the worker machines need to access

files that your test is dependent on, you can add the names of the files or
directories of files as dependencies in the SystemTest software and they will
be copied to each worker.

Note: There is overhead in copying files for each task. If there are files that
can be accessed from a shared location by the worker machines, use Path
Dependencies instead. For example, if you use a Simulink element that
references a large model available from a shared network folder, you should
set a path dependency to the directory containing your model.

File dependencies can be defined in the File Dependencies table, as
described below, or can be defined in the user configuration that is set up in
the Parallel Computing Toolbox software. If there are any file dependencies
specified by the currently selected user configuration, they will also be listed
in this table, but will appear in italics and are not editable here. File names
you enter through the SystemTest software appear in regular text and are
editable here.

To set up a file dependency:
1 Click the File Dependencies tab within the Distributed tab.
2 Double-click the entry row in the table (the top row).

The row becomes a text field.

3 Do either:

e Type the full path and file or folder name in the field, and then press
Enter.

® (lick the browse button in the entry row, browse to the file or folder,
then click Open in the browse dialog box.

The dependency you entered then appears as a new row in the list.

10-7

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

The example below shows file dependencies for a MATLAB code file and a
small model to be copied to the worker machines.

[| Path Dependsnicies |

Files or Folders to be copied to the worker machines

«<Double-click to enter or browse ko create File Dependen. .. Delete |
H: \MATLABFiles\AI_system.mdl

H: \MATLABFiles\scalartest.m

Italicized entries are dependencies From the User Configuration and cannok
be edited

If you want to delete a file dependency, select it and click the Delete button.
You can delete only dependencies added in the SystemTest software. You
cannot delete any that are specified by the user configuration.

10-8

Setting Up Path Dependencies

Setting Up Path Dependencies

Use the Path Dependencies table to indicate directories to be added to the
workers’ MATLAB path. If the worker machines need to access certain files
during the test, you can add the directories here. These directories are added
to the workers’ MATLAB path such that the necessary files can be located.
For example, if you use a Simulink element that references a large model
available from a shared network folder, you should set a path dependency to
the directory containing your model.

Note: If there are files that cannot be accessed from a shared location, use
File Dependencies instead.

You can enter path dependencies in the Path Dependencies table, as
described below, or in the user configuration that is set up in the Parallel
Computing Toolbox software. If there are any path dependencies specified
by the currently selected user configuration, they will also be listed on this
tab, but will appear in italics and are not editable in the SystemTest software.
Paths you enter through the SystemTest software appear in regular text

and are editable here.

To set a path dependency:
1 Click the Path Dependencies tab within the Distributed tab.
2 Double-click the entry row in the table (the top row).

The row becomes a text field.

3 Do either:
¢ Type the path in the field, and then press Enter.

¢ (lick the browse button in the entry row, browse to the directory, then
click Open in the browse dialog box.

The dependency you entered then appears as a new row in the list.

10-9

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

In the following example, because the model is very large the user set up a
path dependency for the directory containing the model that the test uses.

File Dependencies Path Dependencies

Directories to be added to the worker's MATLAE path

«Double-click to enter or browse to create Path Depende. . Delete |
H:SimulinkFiles\Engine_Block_Model
Thome/SimulinkFiles/Engine_Block_rModel

Italicized entries are dependencies from the User Configuration and cannok
be edited

Notice in this example that the path is listed twice, once in Windows® format
and once in UNIX® or Linux® format. If you have a heterogeneous cluster
that contains both Windows and UNIX or Linux worker machines, you need
to add the path twice so that all workers can use it.

10-10

Setting Up Path Dependencies

Note Path dependencies must be listed in the format supported by the type
of worker machines the cluster contains, as shown in the previous figure
(which shows both styles). Also, for Windows machines that cannot be directly
accessed by all the workers, you need to specify the path as a UNC path.

If you want to delete a path dependency, select it and click the Delete button.
You can delete only dependencies added in the SystemTest software. You
cannot delete any that were specified by the user configuration.

10-11

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

Distributing Iterations Across Tasks

The Distribution of main test runs across tasks option on the
Distributed tab determines the distribution of Main Test iterations into
tasks that the workers perform. The calculation is based on the total number
of iterations your test contains.

By default, the Default option is selected and the text in parentheses
shows the number of iterations per task and number of tasks. The default
is calculated by dividing the number of iterations in your test by 32 (an
approximation based on a setup of 8 workers, with a target of 4 tasks per
worker), and using the closest number to that. For example, if your test
has 90 iterations, the default will be 3 iterations per task and 30 tasks, as
shown below.

Distribution af main kest runs across tasks

Calculated using 90 iterations

{* Defaulk (3 iterations per task, 30 tasks)
i |1 iterations per bask, 90 kasks

If you run your test and this does not seem efficient, you can change the
number of iterations per task and number of tasks. To change it:

1 Select the second option. The number field becomes editable.

2 Enter the number of iterations per task you want to use.

10-12

Distributing Iterations Across Tasks

3 Press Enter.

The number of tasks is then calculated (total number of iterations divided
by number of iterations per task) and shown in parentheses. For example,
if you had the same test with 90 iterations, but changed iterations per
task to 6, you get 15 tasks.

Distribukion of main kesk runs across kasks
Calculated wsing 90 ikerations

" Default (3 iterations per task, 30 tasks)
v IE iterations per task, 15 tasks

10-13

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

Running a Distributed Test

You run a distributed test as you would run any other test, by clicking the
Run button in the SystemTest toolbar.

When you run a distributed test:
® Pre Test executes once, on the client machine (the machine from which

you run the test).

e Main Test iterations execute on the cluster of worker machines defined
by the user configuration.

® The SystemTest software waits for the distributed test to complete.

¢ [f there are errors when the distributed test iterations run, only the first
error from the tasks will be reported to the Run Status pane in the
SystemTest software once all tasks have completed.

® At the end of each Main Test iteration, test results are saved and returned
to the client machine once all Main Test iterations have finished executing.

Note Because Main Test iterations run across a number of tasks, there is
no guarantee as to the order the tasks (Main Test iterations) will execute.
Tests should not be written with the assumption that iterations will execute
in a fixed order.

Also, because Pre Test runs on the client machine, and tasks run independent
of each other, Main Test iterations should not rely on data persisting across
multiple iterations.

e Post Test executes once on the client machine, after Main Test executes or
has errored while running.

¢ Test execution reports are generated at the end of the test, if enabled by
the test.

® Generated plots are not shown on the client machine while the test
runs, but are captured and displayed in the Test Report. Note that plots
generated on worker machines will only reflect information generated as
part of the task. Plotting multiple data points or lines on a single plot will

10-14

Running a Distributed Test

only reflect the data pertaining to iterations executed as part of a single
task.

Note that MATLAB and the SystemTest software remain in a busy state until
the distributed test is done running or is stopped.

Caution It is recommended that you do not run a test containing
hardware-related elements in distributed mode. That includes the Image
Acquisition Toolbox element, the Data Acquisition Toolbox elements, and the
Instrument Control Toolbox elements. These elements will likely error out
because the connected hardware will not be available on the workers.

The following diagram illustrates the relationship between the SystemTest
software, the scheduler, and the workers. Task 1 to Task X and Iteration 1 to
Iteration N are determined by what is shown in the Distribution of main
test runs across tasks section in the Distributed tab. For example, if the
Distribution of main test runs across tasks for a test with 90 iterations
1s set to Default (3 iterations per task, 30 tasks), that means your test
will execute 3 iterations for each of 30 tasks. In this case, Task 1 might run
iterations 1, 2, and 3, and Task 2 might run iterations 4, 5, and 6, etc.

10-15

1 O Distributing Tests Using Parallel Computing Toolbox™ Integration

Pre Test

- ~ - E t ¥
’ iterations 1 to N
5 in Task 1

b Executes
iterations 1TtoN 4
in Task 2

| iterations 1 to N
in Task 3

= ——

Execute until X tasks
are complete

Main Test (waits for work to complete)

Post Test

10-16

Example: Distributing a Test

Example: Distributing a Test

The following general example shows how you can distribute any test you
have created.

You create and set up a distributed test as you would set up any test, using
the SystemTest desktop. If you determine that the test takes a long time to
execute, you may benefit from distributing it. You then use the Distributed
tab on Test Properties to set up the test distribution.

To distribute a test:

1 Select your test name in the Test Browser. Then click the Distributed
tab in the Test Properties pane.

2 Select the Enable Distributed Testing check box to enable distributed
testing and activate the other options on the tab.

3 The SystemTest software uses the user configurations set up in the Parallel
Computing Toolbox software. User configurations identify various settings,
such as which scheduler to use.

In the User Configuration section, keep the default user configuration, or
select the second radio button and choose a different configuration from the
drop-down list.

For more details, see “Selecting a User Configuration” on page 10-5.

4 If your test is dependent on files, such as models, MATLAB code files, or
MAT-files, in order to execute, you need to specify the dependent files so
that the worker machines can access the files while the test is running.

If there are files that need to be copied onto the worker machines, use the
File Dependencies tab. If there are files available on a shared network
location that need to be accessed by the worker machines, use the Path
Dependencies tab instead. For example, if you use a Simulink element
that references a large model available from a shared network folder, you
should set a path dependency to the directory containing your model.

Enter the necessary file or path dependencies into the respective tabs by
double-clicking the top row in the tables. For more details, see “Setting

10-17

1 0 Distributing Tests Using Parallel Computing Toolbox™ Integration

10-18

Up File Dependencies” on page 10-7 and “Setting Up Path Dependencies”
on page 10-9.

The SystemTest software will calculate number of iterations per task
for you, or you can specify that, in the Distribution of main test runs
across tasks section.

Use Default, or change it by selecting the second option, which enables the
number field. Enter the number of iterations per task you want to use and
press Enter or click outside the field.

For details on how these values are calculated, see “Distributing Iterations
Across Tasks” on page 10-12.

Run the distributed test as you would run any other test, by clicking the
Run button in the SystemTest toolbar.

For information on what happens when you execute a distributed test, see
“Running a Distributed Test” on page 10-14.

Using the Test Results
Viewer

This chapter explains how to use the Test Results Viewer to explore and
analyze your test results.

“Viewing Test Results” on page 11-2

“Before You Begin” on page 11-3

“A Quick Tour of the Test Results Viewer” on page 11-6
“Viewing Your Test Results” on page 11-8

“Refining Your Test Results” on page 11-29

“Viewing Simulink Time Series Data” on page 11-38

“Saving and Reloading Test Results” on page 11-43

11 Using the Test Results Viewer

11-2

Viewing Test Results

This chapter is about the Test Results Viewer, which may be an efficient way
to view results for some tests. However, we recommend viewing results via
the command line in MATLAB instead of using the Test Results Viewer.

The SystemTest software allows you to view the results you have chosen to
save for your test using a workspace variable called stresults. It provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

For more information, see Chapter 12, “Accessing Test Results from the
MATLAB Command Line”.

If you choose to use the Test Results Viewer, the following sections document
its use.

Note The Test Results Viewer is being deprecated. In R2010b, the Test
Results Viewer is no longer available from the SystemTest desktop. It can
still be opened via the stviewer function. Please see “Deprecation of Test
Results Viewer” in the SystemTest Release Notes for more information.

Before You Begin

Before You Begin

The examples in this chapter use saved test results from the Throttle demo.
You can follow the explanations by loading and running the Throttle demo
from the MATLAB command line. The Throttle demo is no longer configured
to open the Test Results Viewer upon completing a test. You would need to
use the stviewer function after the test runs.

See the SystemTest Demos page for an explanation of the Throttle demo.

Note This demo will not be listed if you do not have Simulink installed.

To prepare for the rest of this chapter:

1 Start MATLAB.

2 In MATLAB, select Start > Demos to open the Help browser opens.

3 Expand the MATLAB list from the left frame of the browser.

4 Click SystemTest. The SystemTest demos open in the right browser frame.

5 Under Simulink, click Validating a Throttle Body Model. An overview
of the demo opens.

6 Click the link Open the demo in the SystemTest desktop at the bottom
of the page.

Alternatively, you can enter the following command at the MATLAB
command line:

systemtest demosystest_throttle

After the SystemTest desktop appears, run the loaded test. Do one of the
following:

® (Click the Run button.

11-3

Using the Test Results Viewer

114

J SystemTesk -

Fil= Edit

Insert

Furn Tools

imple_Demod.test*

Desktop Window Help

N & |9 o Bl

B stop | (7]

Teskt Browser

A 3

| Properties

- ¢ ® X

F.u

N

|| |—Map Test Variables

® Press the F5 key.

e Select Run > Run.

The SystemTest software runs the Throttle demo test and saves the specified
test results. You would then open the Test Results Viewer when it finishes.

«): Test Results ¥iewer - H:\ThrottleDemo_results.mat -10] x|
File Edit view Inset Tools Constrainks Resuls Plots Desktop Window Help
i 1o [
[EFiots - 7 x
(e Tl B BODBSO » x
| > Resuts |
] -
HH position_sim =750x1 double= Raw array
:H postion_horm =1x1 couble= Raw scalar
HH postion_limt =1x1 double= Raw scalar =]
R o S’ e T8 e o
W Test Veclors |
I |Va“‘Ie | Step 1. Explore your data and
Damping =5x1 doublex create constraints to view subsets.
HH Mass (045020 o 2
FH siittness <61 doubies Plot it using the toolbar buttons:
= —]
w Data Statistics: posttion ks Refresh |
Statistic Uncanstrained Constrained
Max 665 66.5 |
hin FER] z31 J
hean GE.4 G6.4
Median 3 6 =]
Constraints 2 x

BT T ST

I oamping [=[50 =] 4 —

5 13 Define Plot a X
[~ mass Lol |D15 - 1 l— b
015 025
I sfiffress | == » |15D > 1 l— 3
15 20
R 50750 et alions
| I Plot single terstion st & time
A

Before You Begin

Note You can open the Viewer directly from MATLAB by typing stviewer at
the MATLAB command line. The Viewer would open in an empty state. To
open test results then, use the File > Load Test Results menu command.

11-5

11 Using the Test Results Viewer

A Quick Tour of the Test Results Viewer

The Test Results Viewer is organized to show you the test vectors you
specified as inputs to your test, the results saved from your test, and tools you
can use to plot and examine your test results.

Plot choices Plotting tools Plot display options

sl Vimvwer - 4 ol Usteinio_pesidsal
Constraits Resubs Pty

< Test o

Deditop Window Help

7 % [Pt - L ot
H&lé"-‘\ﬁf’?/d DE<%& BODE&0 ~x

Line Plot: possion_sir vs. Index

_ Plotted data

/..

Data browser

~ Selected data

™= ssls]
Mn Z11 1] j B3
Man i 1) 1
Medan W w =l a25
Tty amit s x| gl Ll
CLL-E | o
Fowery [FEI[E =] ¢ —— =
Fawe [TS]TS] « J——{mawe [T 2] vt atecsntranes g winso ot T —T Values of
o iase [= o | e | vme T | selected data
Data constraints [s [T 2 b———| fli— sow[ufusea =] - i P
- et v] aa [opn =] =+ jpostion st 35 |
I 05 s [ievee [me T
I Pt e tevstion s d toma 2 e T =
s femp e L] (R | S
|
Plot display options

The test results and test vectors from your test are available in the Data
pane, which is a compact data browser. You choose your plot type, set your
display options to include what appears on the different axes, and plot your
data. The plotting tools let you select data from the plot to examine, and
you can see the actual values that resulted in individual plot points in the
Current Iteration pane, which will open automatically when you select a
plot point. If this pane is not visible, select Desktop > Current Iteration.

11-6

A Quick Tour of the Test Results Viewer

“Viewing Your Test Results” on page 11-8, “Refining Your Test Results” on
page 11-29, and “Viewing Simulink Time Series Data” on page 11-38 explain
how to use the Test Results Viewer to plot and examine your test results.

11-7

11 Using the Test Results Viewer

11-8

Viewing Your Test Results

In this section...

“Reserved Keywords” on page 11-8
“Browsing Results” on page 11-8
“Generating Plots” on page 11-9
“Exploring Plots” on page 11-16

Reserved Keywords

The Test Results Viewer has several reserved keywords that you cannot use
as a test result name or as a derived result name. These keywords are:

® time

® testrun

testruns
® metadata

e data

If any of these keywords are used as a test result name, they will be prepended
with "st_" when loaded in the Test Results Viewer. If you try to use these
keywords as a derived result name in the Test Results Viewer, you will get
an error message.

Browsing Results

“Viewing Test Results” on page 1-43 notes that the Test Results Viewer
contains a data browser within the Data pane. This area of the viewer is one
of the first things you see when the Test Results Viewer opens. It shows you
the test variables and test vectors your test used, and it shows information
about their values in the Data Statistics area.

These data statistics summarize the values of a test result or test vector
across all of the tests. For example, the Throttle demo varies the parameters
for mass, damping, and stiffness of a Simulink model. Test vectors vary

Viewing Your Test Results

Simulink block parameters for 90 test iterations, and the SystemTest software
saves how these changes affect the position of a simulated throttle opening in
the position_sim test result.

If you click position_sim in the Results area of the Data pane, the Data
Statistics area shows you a summary of statistical information for all 90
iterations. In this example, you have not defined any constraints on your data,
so statistical information for the constrained and unconstrained columns is
the same. See “Creating and Applying Constraints” on page 11-29.

| w Data Statistics: position_sim i Refrash |
Statistic Unconstrainedd Conztrained

High §6.9 56.9

Loy 23.4 23.4

hiean 651 651

hedian 54.5 54.5

STD 26.6 26.6

“Generating Plots” on page 11-9 explains how you can further explore your
test results.

Generating Plots

The Test Results Viewer has a plotting capability that helps you understand
your test results. You can determine how values of different inputs (test
vectors) affect the overall test results.

To generate any plot:

1 Click the button corresponding to the type of plot you want to generate.
The plot buttons are below the menu bar. For example, click the Line Plot
button. See “Choosing a Plot” on page 11-15 for an explanation of your
choices. You can also use the Plots menu to generate plots.

11-9

11 Using the Test Results Viewer

«): Test Results Yiewer - C:h\Ten
File Edit Wiew Insert Tools o

Dl

Line Plak

2 Choose the data to use for your X-axis and Y-axis in the Define Plot pane.
For example, select *Auto* from the X Axis list and position_sim from
the Y Axis list to show the simulated throttle position trajectories at each
test iteration. See “Choosing a Plot” on page 11-15 to understand which
data types are available on each axis.

Define Plok: Line Plot 1 A X
Plat type: Line l‘ “alid plot of unconstrained data with 90 line(s)
Kbz |ttt R4 -]

Showy I LI az |subplu... L‘ =
arl I ll az Isuhplu... ll ek

W Axis osition_sim

k|

Multiple ' Data Copy Settings | Refresh Plot |

Note Selecting *Auto* when creating a plot means the plot will show the
exact number of values in the test vector or result you are plotting. For
example if you are plotting a test vector that has 50 values, and you select
Auto for one of the axes, that axis will display 50 points.

3 Choose a different plot type if you do not want to use the default. To choose
a different plot type:

a Click Plot type in the Define Plot pane.

11-10

Viewing Your Test Results

Define Plot: Line Plot

Plot type:

o Awis

Y Axis

position_sim

Multiple % Data

b Click the plot type you want to use. For the Throttle demo example,
use the default sine wave.

4 Click the Plot button. The Test Results Viewer renders a plot based on
your selections.

Plots - Line Plot A X

& h|aa®® e |08|<8 EODE 0 »x

Line Plot: position_sim vs. Index

position_sirm

20

1 1 1 1 1 1 1
0 100 200 300 400 500 500 7oo 800
Index

Each line in the plot represents a test iteration. If it appears that there are
not as many lines as you had test iterations, it is possible that two or more
iterations generated similar enough results that they overlap.

Now you can analyze the plot. To help you with this task, you can:

11-11

11 Using the Test Results Viewer

11-12

* Explore the plot using the plotting tools available to you as explained in
“Exploring Plots” on page 11-16.

¢ Refine what results are shown in your plot as explained in “Refining Your
Test Results” on page 11-29.

Plotting Grouped Test Vectors

You can plot grouped test vectors on both the X and Y axes of scatter plots.
Using grouped test vectors in plot configurations allows you to see the
relationship between the grouped vectors.

The following figure shows an example of a test that has two grouped test
vectors, TestVector1G and TestVector2G. The scatter plot allows both
grouped vectors to be shown in the plot, one on each axis. That is useful for
Monte Carlo simulation testing. For example, if you have two vectors that
vary the mass of two different components in a model, you could see them in
relation to each other.

Viewing Your Test Results

[} "Plots - Scatter Plot 2 2
H&E Lk &aa® € 0Ex 8 BOAE &0 2 x
Scatter Plot: TestVector2G vs, TestVector! G
15 T T T T T T T T T i‘)
14 -
e}
12 -
oy 10+ o} =
L
(]
o
o
z ar -
o
— Q
B L |
4 &} -
al _
s I I I ! I I ! ! I
1 2 3 4 5 G 7 g a 10 11
TestVector G
© linePlot1 x| ScatterPlot x| LinePlot2 x| LinePlatd x |[ScatterPlatz x|
Define Plot: Scatter Plot 2 A X
Plak type: IEl Scatter LI Plot of unconstrained daka with 600 points
* Ais, I TestvectorlG LI ;I
Shiow I LI as I subplot rovs LI -
W Bxis: I TestVedctor2i ;I
and I LI as Isubplot columns LI - +
hd
Multipl= ¥ Data Copy Settings | Refresh Plat |

11-13

11 Using the Test Results Viewer

To plot two grouped test vectors in the viewer:

1 Select Scatter as your Plot type.

2 Select the first grouped test vector from the X Axis list.

3 Select the second grouped test vector from the Y Axis list.
4 Click the Plot button.

You will see a plot similar to the one shown above in which you can see how
the two test vectors relate to each other.

Using Grouped Test Vectors as Distinguishing Variables in Subplots

You can also use grouped test vectors as distinguishing variables in subplots.
You can select them in the Subplot drop-down lists next to the labels show
and and.

For example, in the example shown above, if a test variable TestVariable1
were plotted against a non-grouped test vector TestVectoriUngrouped,
TestVectori1G could be used to distinguish the resulting scatter points using
different marker colors and TestVector2G could be used to distinguish them
by different subplot rows. The grouped test vectors would appear in the
subplot drop-down lists to allow this configuration.

11-14

Viewing Your Test Results

Choosing a Plot

There are six types of plots. The line plot, mesh plot, and time series plot
types have additional subtypes available. Additionally, the Test Results
Viewer has rules for determining which test results you can plot on the
X-axis, Y-axis, and Z-axis. These rules vary by plot type. The following table
explains these selections:

Plot Description
Line Standard line plot of Y versus X. Represents scalar or vector
data. The default is a wave line, but you can choose a square
Y line sub type. The following data are allowed on each axis:
e X — Numeric test vectors
¢ Y — Numeric test results
Surf Wireframe surf plot based on X, Y, and Z coordinates.

L&

Optional surface sub type available. The following data are
allowed on each axis:

e X — Numeric test vectors

¢ Y — Numeric test vectors

e 7 — Numeric test results

Scatter

&
« +*

Standard scatter plot of X and Y where either axis can have
numeric test vectors or numeric test results.

Time Series

gl

b

Plots time series data Y against time (X is always time).
Designed to represent Simulink time series object data. The
default is a wave line, but you can choose a square line sub
type. See “Viewing Simulink Time Series Data” on page
11-38 for more information about this plot type.

11-15

11 Using the Test Results Viewer

Plot Description

Waterfall Waterfall plot for vectors or time series. One vector or time

series can be displayed on each waterfall plot. The meaning
I__.-'__'-_I_'l_ of the X, Y, and Z axes is as follows:

e X — Is automatically selected to be “*Auto*” if the Z axes
is assigned to a vector-valued test result, or “Time” if Z
axes is assigned to a time series test result.

® Y — You can select either Test Run or Iteration. In
the former case, if a test is excluded by application of
constraints a gap will appear in the waterfall plot at the
Y position corresponding to that test. In the latter case,
lines representing the test result displayed on the Z axis
are always placed in consecutive Y positions.

® 7 — You can select either a single vector-valued numeric
test result or a single time series test result.

Image Lets you look at individual frames from an image sequence
saved during a test iteration. Data must be a supported
[MATLAB Image format, and must be numeric test results
'-‘ﬁ whose size is compatible with an image, namely that:

e It has three or four dimensions.

¢ The third dimension has a length of 1 or 3.

Exploring Plots

This section describes the tools the Test Results Viewer makes available to
help you understand its generated plots. It contains the following topics:

® “Plotting Tools” on page 11-17 describes the tools available to help you
examine and understand the contents of a generated plot.

* “Viewing Individual Iteration Values” on page 11-17 shows how to focus on
specific iteration test results in a plot.

* “Highlighting Values in Your Plot” on page 11-21 shows how to distinguish
test results in a plot.

11-16

Viewing Your Test Results

¢ “Exposing Overlapping Plot Lines” on page 11-25 explains how you can
view individual lines in a plot that shows multiple test result values as
the same line.

Plotting Tools

The Test Results Viewer integrates the MATLAB Figure Toolbar, which
lets you examine and distinguish the test results shown in your plots. See
“Plotting Tools—Interactive Plotting” and “Data Exploration Tools” in the
MATLAB Graphics documentation for more information.

In addition, the viewer also supports the desktop arrangement tools available
in the MATLAB editor. See “Arranging the Desktop — Overview” in the
MATLAB documentation.

The Test Results Viewer adds the following features to the MATLAB Figure
Toolbar:

e Test run selection — Lets you click different test runs in the plot and see
the test vector and test results for that iteration in the Current Iteration
pane. “Viewing Individual Iteration Values” on page 11-17 shows an
example of how to use this.

¢ Lock the plot — Prevents constraints from changing the test results
displayed in the plot.

Viewing Individual Iteration Values

Every test iteration has its own representation in a plot unless you screened
it out with a constraint (“Refining Your Test Results” on page 11-29 explains
constraints). By clicking a line, marker, or surface in a plot with the test run
selection tool, you can see the information associated with that test iteration
in the Current Iteration pane.

For example, “Generating Plots” on page 11-9 demonstrates how to generate
a plot showing all test iteration results of the Throttle demo. You can use
the Test Results Viewer plotting tools to zoom in on areas of the plot and

determine which iteration was responsible for the result.

1 Click the Zoom In button.

11-17

11 Using the Test Results Viewer

2 Move the mouse pointer over an area of the plot you want to investigate
further.

3 Left-click your mouse or click and drag over the area you want to see. The
plot redraws to show this area.

Line Plot: position_sim vs. Index
T T T T T T

position_sirm
[ux) =)
[a] [am]
T T
1

[mx)
=
T

75k

1 1 1
150 200 250 300 350 400
Index

You can repeat zooming in until you have the level of detail you want.

11-18

Viewing Your Test Results

Line Plot: position_sim vs. Index
T T

e M
"3"\\\//’\\//’0‘ j
g & ‘ ’

" N) -

i \%‘o‘o
845 | | I .:.:..”. .:".:.' | j

Indesx

4 To turn off the Zoom, click the Zoom In button again.

5 Click the Select an iteration button in the Figure Toolbar.

<} Plots - Line Plot 1

| Select an iteration

6 Click one of the plotted lines in the line plot. The viewer marks the line.

11-19

11 Using the Test Results Viewer

..':Q

Q?EI 280 285 29E|

The viewer simultaneously populates the Current Iteration pane with
information about the values for all test vectors and test results for your

selected test iteration. This lets you easily see what test conditions generated
a specific result.

Current Iteration - T 4
Export...

Result Yalue |
pazs_fail 0 &
pozition =780 double=
poition_lirmit 25
position_norm 97.9 =]

Test Wector Yalue |
Dratrpitig 5 ;I
hsss 02
liffress 15

=

11-20

Viewing Your Test Results

Highlighting Values in Your Plot

The Test Results Viewer lets you further distinguish your test results for
any given plot by letting you control how a plot renders the data on each
axis. This is useful in deciphering test results on a plot—especially when the
initial plot has a large number of test results closely grouped together. This
section explains how you use the Define Plot pane to modify the appearance
of your plot without modifying the underlying test results. (See “Refining
Your Test Results” on page 11-29 for information about modifying the test
results used to render a plot.)

The Define Plot pane provides four ways to distinguish plotted test results:

e Color

®* Markers

® Subplot rows

® Subplot columns

For example, the Throttle demo shows the effect of variations in mass,
damping, and stiffness on a component of a Simulink model. The plot you
generated in “Generating Plots” on page 11-9 shows test results for of all test

iterations, but it is impossible to determine how changes to each test vector
affected this outcome. To distinguish the test results on the plot:

1 Zoom in on an area of the line plot so that you can see individual test

iterations (as explained in “Viewing Individual Iteration Values” on page
11-17).

11-21

11 Using the Test Results Viewer

Line Plot: position_sim vs. Index

§

/\) i

\a

I,II'

A
it

I 1
250 260 270 280 290

1 ."-I. 1
300 310 320 330

2 In the Define Plot pane, click Show > Damping.

Define Plot: Line Plot 1 ERD ¢
Plot type: I Line :J “alid plot of unconstrained data with 90 linels)
Ko | rsuto’ =] =]
Shioyy &5 Isubplot rovE it | =
N i | position_sim bl
an as Isubplot columns ¥ | =
Mass
Stiffness
I
Muttiple ** Data Copy Settings | Refresh Plat |

3 Select color from the as list.

4 Click the Refresh Plot button. The plot lines change to show a range

of colors.

11-22

Viewing Your Test Results

Line Plot: position_sim ws. Index

it d:::j'.r 2 1 I £ I
250 260 270 280 280 300 310 320 330

You now have some idea how damping has affected the test results. You have
a cluster of blue, green, and red indicating that damping is the same value in
each cluster, which you can confirm by using the test selection tool to choose
lines and by viewing the value for the Damping test vector in the Current
Iteration pane.

You can modify the appearance of another set of test vectors to further
understand the test results. For example, the menu below Damping can be

used to distinguish variations in mass with markers.

1 Click the menu next to and.

=
Showe I Darnping - | as I color - | -
and I o | as Isubplm columnzs ¥ | ol
Dramping
Mass LI
Sliffness

Copy Settings | Refresh Plot |

2 Select Mass from the list.

11-23

11 Using the Test Results Viewer

3 Click the menu next to as and select marker type.

£

Shosny I Damping hd | as I color hd | =
ahd IMass Vl as | subplot columns Vl — ar

subplat roves

subplot columns

4 Click the Refresh Plot button.

The viewer redraws the plot to show markers distinguishing variations in
mass. Notice how each cluster of lines has its own unique color and marker,
which shows that variations in damping and mass have a visible effect when

you run the model.

Line Plot: position_sim vs. Index
T T T T

76_

1
250 270 280 290 300 310 20 30

You can add two more rows using the + button in the Define Plot pane to
distinguish your test results further.

11-24

Viewing Your Test Results

as | colar - -

Add a row
L—
as |marker type | - +—]

Note These colors and markers do not necessarily show the same value
throughout the overall plot. The viewer cycles through all colors and markers
in the palette making it possible for different test result values to have the
same color or marker.

Exposing Overlapping Plot Lines

It is possible for plot lines and points to overlap and appear undistinguishable.
When multiple lines overlap, you can create subplots to distinguish the data
points.

For example, if you create a line plot for the Throttle demo with the X-axis

set to *Auto* and the Y-axis set to position_sim, the Test Results Viewer
renders a plot with plot lines in close proximity.

11-25

11 Using the Test Results Viewer

11-26

Plots - Line Plot A X

H& | h|eaOH9 (€| 08|58 HOB=0O 2 x

Line Plot: position_sim vs. Index

position_sirm

20

1 1 1 1 1 1 1
0 100 200 300 400 500 500 7oo 800
Index

This plot has 90 lines that are too close together to be able to discern clear
patterns. You can use the Define Plot pane to distinguish plots of test results
by placing the generated lines of a test in individual subplots. Each subplot
shows the test vector values associated with the test results being plotted.
The number of runs per test vector value determines how many subplots you
can generate. Using the Throttle demo, you can generate subplots based on
changes in damping, mass, or stiffness. For example, what effect did changes
in mass have on these test results? To show its effect:

1 In the Define Plot pane, select Show > Mass.

Viewing Your Test Results

Define Plot: Line Plot 1 A x
Plot type: I Line ﬂ “alid plot of unconstrained data with 90 linels)
Kaxis | ot - Al
Showe LI as Isubplot o it | =
N i | position_sim bl
an ¥ as Isubplot columns ¥ | =
Dratngitigg
I
I
Multiple %" Data

Copy Settings | Refresh Plat |

2 Select subplot rows from the as list.

i

Sha I Mazs > i as I subplat roves W | =
subplat columns

color

marker type

3 Click the Refresh Plot button.

The viewer now shows three subplot diagrams, one for each value of the
Mass test vector.

11-27

11 Using the Test Results Viewer

Line Plot: position_sim vs. Index
100 T T T T T T T

Mass 015
(8]
O
1

100 T T T T T T T

a0 - -

position_sim
hass 0.2

100 T T T T T T T

Mass 0.26
[y}
o
1

1 1 1 1 1 1 1
a 100 200 300 400 s00 G00 700 ao0
Index

11-28

Refining Your Test Results

Refining Your Test Results

In this section...

“Creating and Applying Constraints” on page 11-29
“Plotting Single Iterations” on page 11-36

Creating and Applying Constraints

This section explains how you create and apply constraints to restrict the test
results to a subset of test iterations. You also see how to use a constraint
to walk through a set of test results.

Constraints are a Test Results Viewer mechanism that screen out test result
values. Constraints can be a single value, a range, or an evaluated expression.
Applied constraints result in plots rendered from a subset of test iterations,
and the viewer applies constraints immediately to all plots. This is useful
when you want to screen out or filter test results in your attempts to find

or understand the results of a test.

Using Default Constraints

The Test Results Viewer, when opened after a test run, has constraints
present but not applied. The viewer creates a constraint for each test vector
and defines the constraint’s range as a function of the full range of values in
the test vector. These default constraints let you see the immediate effect of
your test’s test vectors on the results of the test.

For example, the Throttle demo has three test vectors corresponding to
changes in damping, mass, and stiffness to a Simulink model. If you display
a line plot as explained in “Generating Plots” on page 11-9, you get a plot
similar to the following:

11-29

11 Using the Test Results Viewer

Line Plot: position_sim vs. Index

du)
/)

positian_sim
n o et | (u]
[[() _

e
—_

(5]
(=)

20

1 1 1 1 1 1 1
0 100 200 300 400 a00 GO0 700 800
Indesx

This output shows that the test results group in small clusters. You can use a
constraint to see which of the test vectors cause this clustering.

1 Return the plot to the previous state by clicking the menu next to as and
clicking color, then click the Refresh Plot button.

2 In the Constraints pane, select the check box next to the Damping
constraint. The constraint becomes active showing all tests with a Damping
greater than or equal to 5.0, which is the lowest value in the range of test
vectors. All test results remain in the plot.

11-30

Refining Your Test Results

Constraints

R

[~ Mass I == I I I D. — 4
[stittness |:=— vI I I l—

EENRERNRNNNNNNNNNRN NN RN RNRNE 2090 ierations

[Piot single teration at 2 time

3 Click the right-pointing arrow at the end of the Damping constraint’s
slider.

4 _‘j——‘ p— Click this arrow

a 13

This advances the constraints slider by one value of the test vector, which
causes the first value of the Damping test vector to be removed from the test
results used in generating the plot. The viewer immediately applies this
constraint to the plot, which, in this case, removes the left-most cluster of test

results from the plot.

11-31

11 Using the Test Results Viewer

11-32

Line Plot: position_sim vs. Index
T T T

position_simm

20

1 1 1 1 1 1 1
0 100 200 300 400 500 GO0 700 800
Index

The constraint counter gives another way for you to see whether the
constraint affected the test results. In this case, if you set the constraint
value to 7, the bar shows that there are only 72 of 90 test iterations visible
because of the constraint you just created. Thus these 18 test iterations that
are screened out have a Damping test vector value greater than or equal to 7
(see “Creating a Test Vector” on page 1-16 to understand test vector values).

Refining Your Test Results

Constraints A X

=D & F

[+ Damping |:==j |;-',|:| ﬂ 4 —J— ¥

3 13

[Maszs | J | J J—
[Stitthess | J | J Ji

ERNRRNNRNNNNNNRRNNRNEN] 72030 terations

[Plot single iterstion =t a time

Counter

Creating a Constraint

The Test Results Viewer lets you create a custom constraint based on the

following:

A mathematical expression

Scalar logical test results

Scalar numeric test results

Test vectors

String test results that have a value for each test iteration

You can see an example for creating a constraint based on a mathematical

expression in “Viewing Test Results” on page 1-43.

A constraint you might want to create regularly would isolate test results
that have passed or failed. This is useful if your test contains a Limit Check
element that assigns data to a test variable that you choose to save as a test
result. When this test variable is saved, the SystemTest software records the
test iteration and whether the test passed or failed (represented by a 1 or 0);
you can create a constraint based on these test results. For example:

11-33

11 Using the Test Results Viewer

1 If you activated the Damping constraint in “Using Default Constraints” on
page 11-29, deactivate it now by clearing the check box next to Damping,
or delete it.

2 Click the New Constraint button.

Constraints A X

= EBD * &5

New constraint button

The Add a New Constraint dialog box appears.

3 Click the list beneath the Using a result or test vector field to show the
list of test vectors and test results available for basing a constraint on.

«) Add a New Conskraint . x|

* Uzing a result ar test vector

Damping b

Maszs

Hiffhess
position_novm
poasition_limit
pasz_fail

[0 | Cancel

4 Scroll down and select pass_fail in this list. This is the name of the test
result that is used to save the Throttle demo’s Limit Check element’s
output.

5 Click OK. The viewer adds the new constraint to the Constraints pane,
but it is not active.

6 Select the check box next to the pass_fail constraint to apply it.

11-34

Refining Your Test Results

[stifiness |>= v”1s.u vl 4 1!—20 4
=k i

NENNNNNRNNNNNNNNNNNENRNNRNNN 90/0 terstions

7 Change the operator to ==. The value is already set to 0, representing
failed test iterations.

You now have a constraint set to show only those test iterations that failed.

Line Plaot: position_sim vs. Index
90 T T T T T T T

These test results are filtered
out by the constraint

/0

B0

50

position_sim

40

30

20

1 1 1 1 1 1 1
0 100 200 300 400 A00 E00 700 &00
Index

If you change the value of the constraint to 1 using the slider, you will show
only those test results that passed the Limit Check element in your test.

11-35

11 Using the Test Results Viewer

11-36

Line Plot: position_sim vs. Index
90 T T T T T T T

a0

70

positian_sim
o
=

[y]
=

40

30

20 1 Il 1 1 1 1 1
0 100 200 300 400 500 &00 700 200

Index

Plotting Single Iterations

The constraint option Plot single iteration at a time lets you step through
and see individual test results within the subset defined by the active
constraints. The plot shows only one test iteration until you choose to show
the next or previous one. The specific values for that test iteration’s test
vectors and test results appear in the Current Iteration pane. This is useful
when you want to know what combination of test vectors allow a test to pass,
or what values can lead to failure.

For example, if you follow “Creating a Constraint” on page 11-33, by the end
you have created a constraint that shows you all test iterations that have
passed. To see each iteration individually:

1 Move the slider for the pass_fail constraint back to 0.

2 Select the Plot single iteration at a time check box in the Constraints
pane.

Refining Your Test Results

Constraints A X

=G0+ $F
I Damping Ip: v”',.r_n vI 4 ; l 3

[Maz= |:=»= ll |E|.15 ll
[T stittriess |:== ll |15,|j LI
[¥ pass_tail I = vl | 0.0 vl

———— e L

v Plot single iteration st = time

|

e,
i
o
]
=

w

e
i
-

1
teration number |1 1 1J = b

The Constraints pane changes to show a slider and the currently
displayed test iteration.

3 Move the slider or click the advance button to see the next iteration. You

see only those test results that match any defined constraints, which, in
this case includes only those tests that have passed.

[T11] 12430 terations

¥ Plot single teration st 2 time

|
lkeration numker !1 1 o | L4
1 12

Click here to advance

The Plots pane updates to show only the plotted line for that iteration.

11-37

11 Using the Test Results Viewer

Viewing Simulink Time Series Data

11-38

In this section...

“Overview” on page 11-38

“Creating a Time Series Plot” on page 11-38

Overview

The Test Results Viewer lets you plot test results over time. Simulink can
generate time series data when it runs a model, and the SystemTest software
can use this data to generate time series plots. Instead of knowing simply
that a change in a test vector resulted in a specific test result value, you can
now know when during the test that the test vector caused that test result
value to be achieved.

This section shows how you plot test results containing time series data. The
examples in this section use the model from the Inverted Pendulum demo;

if you want to load this model and follow the examples in this section, see
“Before You Begin” on page 4-3.

Creating a Time Series Plot

Time series plots require that you have time series data. Your test results
will contain time series data because of any of the following:

¢ Time series data is generated from Simulink Logged Signals and Simulink
To Workspace signals.

¢ The time series data was explicitly created in a MATLAB element and
assigned to a test variable that was saved as a test result.

® The viewer created a derived result that represents time series data
constructed from Simulink structs (with time data) or log signals. These
new derived results have names derived from their original test result
name and value.

You can verify whether your test generated time series data by reviewing the
test results list in the Test Results Viewer’s Data pane. The viewer labels

Viewing Simulink® Time Series Data

time series test results as being of type Simulink.Timeseries (Simulink
saves time series data within the workspace in Model Data Logs objects).

w Results

Marme £ I‘\-’alue Type I
limit =1x1 double= Raw =calar
=t_time =201 %1 douhble= Raw array
values =201 %1 douhle= Raw array
sy alue =1x1 double= Raw scalar

Eﬁl| st_loggedsignal 110071 Sirnlink. Timeseries} Ohject/struct

£ | =t_outportsignal M=l struct} Ohjectrztruct

£ | st_toworkspace M=l struct} Ohjectrztruct
[IRTSY, =Ny e Almniklas- Pavie smalar

To create a time series plot:

1 Run the test in the SystemTest software.

2 Click the Time Series Plot button in the viewer.

| «): Test Results Yiewer - C:\ Temp

: File Edit View Insert Tools Cc
D ==

pate
. iIme 2eries Fol
A5 B

3 In the Define Plot pane, click the Y Axis menu to show a list of test results
with time series data. The Y Axis field shows only test results with time
series values. The X Axis field is always set to Time in a time series plot.

11-39

11 Using the Test Results Viewer

11-40

Define Plot: Time Series Plot 1

Plct type: Line LI
K Axis: Time

N Axis I LI

=t_loggedsignal

=t_outportsignal_signalt
st_toworkspace_systerntestpendulumToworkspace

4 (Click the test result you want to use. For the Inverted Pendulum example,

click st_loggedsignal.

5 Click the Refresh Plot button.

The Test Results Viewer generates a time series plot with your selected data.

Viewing Simulink® Time Series Data

Tirne Series Plot: st_loggedsignal vs. Time
150 . . .

100

&0

st loggedsignal
(]

-100 .

-1580
0

(el

10 15 20
Tirme

At this point, you can use the data exploration and refinement tools explained
in “Viewing Your Test Results” on page 11-8 and “Refining Your Test Results”
on page 11-29 to make more sense of the test results in the plot.

For example, you can use a constraint to step through each individual
iteration, by selecting the Plot single iteration at a time check box.

11-41

11 Using the Test Results Viewer

? X lE Plots - Time Series Plot 1

A x

FEIRIEESIEINER:

HOBEAO »x

Data
(] B B
* Results |
Name £ IVaIue Type I
lirviit =1x1 doubles= Raw scalar -
:H st_time <2011 double= Raww array
HH vaiues =201 double= Rawy array
HH masvaiue =1%1 doukbles Rawy scalar
@lsl_luggadsignal {1007x1 Simulink. Timeseries} Ohiectfstruct
€| =t_outportsignal {11 struct} Ohjectfstruct
‘Elst_toworkspace {1x1 struct} Ohjectistruct
it b i Bt i =
W Test Yectors |
hlame £ |Value |
:H penid =4 dlouble=
cart =4 dlouble=
HH distance [0.7,0.72]
w Data Statistics: limit i Refresh
Statiztic Unconstrained Conztrained
fufze 1
Iir 1
hean 1
hedian 1
STD]
I
Constraints 2 X

LL RN

I~ penc |== vl 015 vl

™ cart |== vl 0.z Vl
I~ distarce |>= vl 07 'l ‘ 0.7—0_?2 '

« b

015 0g
« V-
0z 0.3

st_loggedsignal

Time Series Plot: st_loggedsignal vs. Time

10 15 20
Time

I, 5232 terstions

W Plot single teration st & time

Heration number |1 4 1—|

32

11-42

Define Plot: Time Series Plot 1

Piottype: |V Line

X Axis

W AXIE

Titne

LI Salid plot of constrained data with 1 linels)

I st_logoedsignal

Multiple " Data

|

= I LI as Isubpl j - ;I
andl Llaslsubpl.. j - +

|

Copry Settings | Refresh Plat |

As this example shows, the time series test result for a single test iteration
is composed of many values over time. There are many points with uneven
spacing reflecting the actual values of the signal over the time period.

Saving and Reloading Test Results

Saving and Reloading Test Results

In this section...

“Saving Test Results” on page 11-43
“Loading Test Results” on page 11-44

Saving Test Results

You can save the plotting and analysis work done in the Test Results Viewer.
Data, constraints, and plots created in the Test Results Viewer can be saved
and then reloaded in order to continue working on or viewing the data, or to
share it with others.

The following information will be saved:

¢ The data set created by the SystemTest software during your test run.
® Derived variables you create in the viewer.

¢ The layout state of the data tables (the order of the columns).

¢ Any constraints that you set up, and their order.

® Any plots you create, and their layout within the viewer.

Note Since any modifications made in the viewer could potentially be saved,
you will see the “file modified” indicator as soon as you do any actions in

the viewer, that is, the asterisk denoting a file as modified will be shown in
the viewer title bar.

To save your test results and the state of the Test Results Viewer, use the
File > Save Test Results or File > Save Test Results As commands from
the Test Results Viewer desktop.

When you use these save commands, a MAT-file is created that contains
all of the information listed above.

11-43

11 Using the Test Results Viewer

Loading Test Results

There are two ways you can load test results in the Test Results Viewer.

¢ Load a saved results file from the File > Load Test Results menu in
the Test Results Viewer desktop.

¢ Load a saved results file from the MATLAB command line by typing
stviewer('matfilename'), where 'matfilename' is the name of the MAT
file containing your results.

11-44

Accessing Test Results from
the MATLAB Command

Line

* “Viewing Test Results at the Command Line” on page 12-2
¢ “Working with Test Results” on page 12-8
o “Accessing Test Results While a Test Is Running” on page 12-15

12 Accessing Test Results from the MATLAB® Command Line

Viewing Test Results at the Command Line

12-2

In this section...

“Introduction” on page 12-2

“Accessing the Results Summary” on page 12-2

“Accessing the dataset Array” on page 12-5

Introduction

After you run a test, the SystemTest software will automatically populate the
MATLAB workspace with a variable called stresults. This variable provides
access to the test results object, which is useful for comparing the results of
separate test runs and for postprocessing test results.

Accessing the Results Summary

You access the results using the stresults variable. To see an example, use
the Fault Tolerant Fuel Control System demo.

1 To open the demo in the SystemTest software, type the following at the
MATLAB command line:

systemtest demosystest_fuelctrl
2 Run the test by clicking the Run button on the SystemTest toolbar.
3 To view the results after the test runs, return to MATLAB and type:

stresults

The test results object looks like the following for the Fault Tolerant Fuel
Control System demo:

Viewing Test Results at the Command Line

stresults =

Test Results Ohject Jummary for 'demosystest fueletrl':

NumberofIterations: 26
TestVectorNames: EGOI3ensor, Enginelpeed,| MAP3ensor, 3peediensor,
ThrottleSensor
SavedBResultNanes: LwvglirFuel, AvgFueslBRate, Noensorshctive,
FimAFRatio, 3imFuelRate
Fesultshatalet: [26x10 dataset]

Artifacts associated with this test result ochject:

[demosystest fuelctrl.test)

Tezt Report

[demosystest fuelectrl report.html)

The summary shows the number of iterations that ran, the names of the test
vectors included in the test, the saved results you specified in Save Results,
the dataset array, and generated artifacts.

NumberOfIterations reflects how many iterations actually executed when the
test ran. This will match what is reflected in the SystemTest software in the
Main Test node of the Test Browser if all iterations ran. If any iterations
stopped or errored out, this will show only the number that did execute.

TestVectorNames is a 1-by-N string cell array containing the test vector
names. The values are an alphabetical list of test vector names.

SavedResultNames is a 1-by-N string cell array containing the test result
names. The values are an alphabetical list of test result names.

ResultsDataSet is the dataset array storing the test vector and test result
values for each iteration. See “Accessing the dataset Array” on page 12-5 for
information on accessing the test results data.

Artifacts provides links to SystemTest-generated documents, such as the

test report. You can open the report by clicking the link. If your test includes
a model coverage report, that would also be included here.

12-3

12 Accessing Test Results from the MATLAB® Command Line

Note that in the example shown here, the Test Report was enabled before the
test was run, so the link is displayed in the results. By default the report is
not enabled. To see the link to the report in this example (or any test you
run), enable the report before running the test. To enable the report, click on
the test name in the Test Browser, then select the Generate report option
on the Output Files tab of the Properties pane.

Accessing Properties of the Test Results Object

You can see a complete list of test results object properties before looking at
the actual test results data. At the command line, type:

get(stresults)

In the example using the Fault Tolerant Fuel Control System demo, you
see the following properties:

>»» get (stresults)
ResultsDatalSet: [96x10 dataset]

DerivedResulcMNames: {}
NumberOfITterations: 96
SavedResultMNames: {'AvghAirFuel' 'AvgFuelRate’ "NSensorsihctive’ "SimAFRatio’ "SimFuelRate’)

StartTime: [2010 1 5 18 7 26.7400]
StopTime: [2010 1 5 12 1 4.2210]
TestFile: 'C:\MATLAB\demosystest fuelctrl.test'

TestVectorNames: {'EGDSensor' 'EngineSpeed"’ 'MAPSensor’ 'SpeedSens=sor! '"ThrottleSensor'}
Artifacts: {'TEST-File' 'C:\MATLAB\demnsystest_ fuelctrl.test'}
Tag: "'
UserData: []
Grouping: {'"' ' ' ' Y

>

In addition to information that is also included in the summary, this includes
derived results names, start time, stop time, tags, user data, and grouping
information.

DerivedResultNames contains values if you created any derived results using
the Test Results Viewer. In the previous example there are no derived results,
so the value is {}. If there were derived results, this property would contain
an alphabetical list of their names.

12-4

Viewing Test Results at the Command Line

StartTime provides the time the test was started in the form of a MATLAB
clock vector.

StopTime provides the time the test was stopped in the form of a MATLAB
clock vector.

TestFile stores the full path and name of the test that generated the test
results. If the test has been saved, the value will contain the full path and
name of the test. If the test has not yet been saved, the value will show only
the test name.

Tag displays any string you specified using the set function. It is a descriptive
string used for labeling purposes. By default, this property is empty.

UserData is a property for storing user data. It is used to store any arbitrary
MATLAB data you would like to associate with the test results object. By
default, this property is empty.

Grouping displays information about grouping of the test vectors. If you
assign any test vectors to groups (using the Grouping tab on the Test
Vectors pane), then the groups are listed here.

Accessing the dataset Array

The ResultsDataSet property contains the test results data in the form of a

dataset array. This is what you set up using the Saved Results node in the
Test Browser. See “Saving Test Results” on page 1-32 for more information
on setting up saved results.

To access the test results data:

1 After running a test, use the stresults variable to view the test results
object summary, as described in the previous section.

2 To access the ResultsDataSet property, type:

stresults.ResultsDataSet

or

get(stresults, 'ResultsDataSet')

12-5

12 Accessing Test Results from the MATLAB® Command Line

This returns the test results data in the form of a dataset array.

In the Fault Tolerant Fuel Control System demo example, a portion of the
test results data looks like this:

»» stresults.Besultshataiet

ans =
EGDRensor Engineipeead HaP2ensor Speedlensor Throttlelensor
Il [1] [300] [1] [1] [1]
Iz [o] [300] [1] [1] [1]
I3 [1] [400a] [1] [1] [1]
I4 (o] [40o] [1] [1] [1]
I5 [1] [500] [1] [1] [1]
Ia (o] [500] [1] [1] [1]
I [1] [60a] [1] [1] [1]
Ia (o] [e00] [1] [1] [1]
Is [1] ETbD] [1] [1] [1]
I1io [al [7oa] [1] [1] [1]

In the dataset array, each row represents a test iteration, labeled using the
convention of ['I' + Iteration_Number]. The previous example shows the
first 10 iterations. Test vector values are listed first, in alphabetical order,
as shown, followed by test results, listed in alphabetical order, as shown in
the following figure.

12-6

Viewing Test Results at the Command Line

I9s [1]
I9g [0]
bvyghirFuel
I1 [14.4466]
Iz [11.8858]
I3 [14.4283]
I4 [11.7511]
IS [14.4281]
Ia [11.6776]
I [14.4196]
I [11.8281]
I9 [1
I10 [1

[800]
[800]

[i.
[1.
[1.
[1.
[1i.
[z.
[i.
[z.
[a.
[a.

AvgFuelRate

33021
£251]
5517]
9158]
6298]
0z61]
63027
03467
O0Z0]
O0z0]

[o]
[o]

Niensorsictive
[4]
[31]
[4]
[31]
[4]
[3]
[4]
[31]
[4]
[31]

[o]
[o]

FimAFRaric

[4098x1
[4095x1
[4084x1
[4064x1
[4067x1
[4067x1
[4005x1
[4005x1
[40059x1
[40059%1

Fimulink.
Simalink.
Simalink.

Simalink

Simulink.
Simulink.

Fimulink

Fimulink.
Fimulink.

Fimulink

Timeseries]
Timeseries]
Timeseries]

. Timeseries]

Timeseries]
Timeseries]

.Timeseries]

Timeseries]
Timeseries]

. Timeseries]

Notice that this example shows the test vectors list for the last two iterations
(195 and 196), and the beginning of the display of the test result values. There
are five results, shown in alphabetical order. The display wraps in MATLAB,
so the fifth result is shown after all the iterations for the first four.

In this example, the value for AvgAirFuel is 14.4466 for the first iteration,
11.8858 for the second iteration, etc.

12-7

12 Accessing Test Results from the MATLAB® Command Line

12-8

Working with Test Results

In this section...

“Introduction” on page 12-8

“Managing Test Results Data in its Native Format” on page 12-8
“Managing Test Results as a Dataset Array” on page 12-9
“Plotting Results Data” on page 12-10

Introduction

After accessing test results data in the form of a dataset array, you can work
with the data in MATLAB. This feature is useful for comparing the test
results data of separate test runs and for postprocessing of test results data.

One advantage to accessing test results data at the command line is that all of
the MATLAB plotting tools are available to use on the test results data. You
can plot the data using any of the plot types MATLAB offers.

Another major use of the datatset array is to quickly see the results when
you use a Limit Check element in your test. You can see whether each
iteration passed or failed, and what the value was.

Managing Test Results Data in its Native Format

You can use indexing to extract out data of the dataset in its native format.
You can index by string or value.

For example, you can assign a variable to represent the dataset, then access
one column of the set using that variable. In the case of the Fault Tolerant
Fuel Control System demo this example has been using, it could look like
the following.

1 Create a variable to refer to the test results dataset array:

SetA = stresults.ResultsDataSet;

In this example the test results data is assigned to the variable SetA.

Working with Test Results

2 Specify the desired columns of data by referencing the name of the test
result.

SetA.AvgFuelRate

This indexed into the column called AvgFuelRate.

Note When extracting data in its native format, the test results are always
returned as a cell array.

MATLAB displays the contents of that column of data, as shown in this
example:

»» Reth = stresults.BPesultshatalet;
»x Seth,dvgFuelRate

ans =

[1.3302]
[1.6251]
[1.5517]
[1.2158]
[1.6298]
[2.0261]
[1.6302]
[2.0346]
[0.0020]
[0.0020]

The first 10 iterations are shown in the example.

Managing Test Results as a Dataset Array

You can also choose to manage the test results as a dataset array, refining
the data as finely as needed. Suppose you just want to get the average fuel

12-9

12 Accessing Test Results from the MATLAB® Command Line

rate for iterations 4 through 8. Use standard MATLAB indexing, as shown
in the next example:

Fr Getlhid:85, 'ALvgFuelRate!')

ans =

bvgFuelBate
I4 [1.9155]
I: [1.82958]
Ia [2.0261]
I7 [1.630Z2]
IS [2.0346]

The value returned represents the average fuel rate for iterations 4 through
8, in the form of a dataset array.

Plotting Results Data

To demonstrate plotting results, you can use another demo called Simple
Demo.

1 Open the demo in the SystemTest software by typing the following at the
MATLAB command line:

systemtest simple_demo

2 Run the test by clicking the Run button on the SystemTest toolbar.

3 View the results summary using stresults at the command line.

12-10

Working with Test Results

*> SysStemtest sSimple demo
>> Stresults

stresults =
Test Results Ohject Swwnary for 'Simple Demo!':

Nuberof Iterations: a0
TeztWVectorName=: =ignal
SavedResultMNames: HilLimit, LowLimit, ¥
Fezsultshatalet: [60x4 dataset]

hrtifacts associated with this test result object:
TEST-File (Zimple Demo.Lest)
Tezt Report (Simple Demo report.html)

You can see that this test has one test vector for a signal, called signal,
and three saved results. The result for Y is the signal’s value for a given
test run.

Note that in the example shown here, the Test Report was enabled before
the test was run, so the link to the report is displayed in the results. By
default the report is not enabled. To see the link to the report in this
example (or any test you run), enable the report before running the test. To
enable the report, click on the test name in the Test Browser, then select
the Generate report option on the Output Files tab of the Properties
pane.

4 Look at the test results dataset by typing the following:

stresults.ResultsDataSet

The first 10 iterations are shown here:

12-11

12 Accessing Test Results from the MATLAB® Command Line

»» stresults.ResultsDatabet

ans =

signal HiLimit LowLimit T
I1 [0.2094] [1] [-1] [0.5228]
Iz [0.4139] [1] [-1] [0.8125]
I3 [0.6283] [1] [-1] [0.2148]
I4 [0.8378] [1] [-1] [1.1565]
IS [1.0472] [1] [-1] [0.99584]
Ina [1.2566] [1] [-1] [0.5486]
I [1.4661] [1] [-1] [0.7730]
Is [1.67E8E] [1] [-1] [1.0414]
I2 [1.8880] [1] [-1] [1.4088]
I10 [2.0944] [1] [-1] [1.3309]

You can see the test vector signal followed by the three results, including
the one of interest in this example, Y.

5 Create a variable called SetB for the results dataset for ease of use in
working with the data.

SetB = stresults.ResultsDataSet;

6 Create variables for the signal (the test vector) and the Y test result.

signalA = SetB.signal;
VarA = SetB.Y;

7 Plot the signal. Because Y represents the current value of the signal for
each iteration of the test, plotting the signal against Y shows the values
of the signal throughout the test.

plot([signalA{:}1, [VarA{:}])

The plot command produces a line plot, as shown here. You can use any
type of plot that MATLAB offers.

12-12

Working with Test Results

rgurez -in/x]
File Edit Wiew Insert Tools Desktop ‘Window Help k"
NEES K RAMBE /|| 0B 0O
o Make new toolbar buttons above For daka brushing 2 linked plots |I| @ »
15 T T T T T T
1k _
04aF -
ok _
0aF —
Lk i
_15 1 1 1 1 1 1
0 2 4 5 3 10 12 14

To use another plot type, such as a scatter plot, replace the plot command.

scatter([signalA{:}]1, [VarA{:}])

12-13

12 Accessing Test Results from the MATLAB® Command Line

rgwez =
File Edit Wiew Insert Tools Desktop Window Help k"
DEeEE FhRAEM®E J-| 2| 0B 0O
or\lote new koolbar buttons above For - data brushing & linked ploks m@ x
151 o o
C‘ e
o &
1t oo ©
o 5 © o
[Xy
gsfe o
o on? o
] e} ©
ok
o © o oo
]
s 2° ¢ ’
O4aF o oo G}o o
]
Cg
o] Oy ©
1k
o
o
15 !] ! ! ! ! J
2 4 5 g 10 12 14

12-14

Accessing Test Results While a Test Is Running

Accessing Test Results While a Test Is Running

While a test is executing in the SystemTest software, you can access test
results using the systest.testresults.getCurrent method.

The getCurrent function is intended to be used in a MATLAB element within
the Pre Test, Main Test, or Post Test sections of a TEST-File, in order to
access test information or test results during test execution.

This is a function of the systest.testresults class, which is the class

definition for a test results object, allowing you to access test results from
MATLAB.

The following example used in a MATLAB element will allow you to access
the test results object while the test is executing. You can query the
ResultsDataSet property to access the underlying test data that is currently
available.

obj = systest.testresults.getCurrent;
currentResults = obj.ResultsDataSet;

12-15

12 Accessing Test Results from the MATLAB® Command Line

12-16

Function Reference

addArtifact

Purpose Add artifact to test results object
Syntax addArtifact(obj, name, filepath)
Description addArtifact (obj, name, filepath) adds an artifact to the

test results object obj using the string name, representing a
user-customizable display name, and the string filepath, representing
the full file path to the artifact.

This function is a convenience for adding additional artifacts to the
Artifacts property of the test results object obj.

Artifacts can be any document or report associated with a test results
object. By associating artifacts with a test results object, hyperlinks are
automatically provided to access the artifacts when the test results
object is displayed at the MATLAB command line.

This is function of the systest.testresults class, which is the class
definition for a test results object, allowing you to access test results
from MATLAB. For more information on the test results object, see
Chapter 12, “Accessing Test Results from the MATLAB Command
Line”.

How To * Chapter 12, “Accessing Test Results from the MATLAB Command
Line”

13-2

getCurrent

Purpose
Syntax

Description

Examples

How To

Access test results object from SystemTest TEST-File

obj = systest.testresults.getCurrent

obj = systest.testresults.getCurrent returns obj, the test results
object associated with the currently running SystemTest test file.

If no TEST-File is currently executing, obj is returned as [].

The getCurrent function is intended to be used in a MATLAB element
within the Pre Test, Main Test, or Post Test sections of a TEST-File, in
order to access test information or test results during test execution.

This is a function of the systest.testresults class, which is the class
definition for a test results object, allowing you to access test results
from MATLAB. For more information on the test results object, see
Chapter 12, “Accessing Test Results from the MATLAB Command
Line”.

The following code example used in a MATLAB element will allow
you to access the test results object while the test is executing. The
ResultsDataSet property can be queried in order to access the
underlying test data that is currently available.

obj = systest.testresults.getCurrent;
currentResults = obj.ResultsDataSet;

Chapter 12, “Accessing Test Results from the MATLAB Command
Line”

13-3

getinfo

Purpose
Syntax

Description

Examples

How To

13-4

List of available Segment type classpaths

INFO = systest.signals.segments.getInfo()

INFO systest.signals.segments.getInfo() returns a cell array
of strings representing the fully qualified classpaths of each available
segment type.

From the list of classpaths, more information can be learned by calling

getDisplayName ()
getParameterInfo()

Get type / parameter info about the first Segment.

classes = systest.signals.segments.getInfo
eval(sprintf('%s.getDisplayName()', classes{1}))
eval(sprintf('%s.getParameterInfo()', classes{1}))

+ “Working with Test Cases and Signals Programmatically” on page
5-57

getSignal

Purpose

Syntax

Description

Examples

How To

Signal mapped to signal name

MAPPEDSIGNAL = getSignal(OBJ, SIGNALNAME)
OBJ . SIGNALNAME

MAPPEDSIGNAL = getSignal(0BJ, SIGNALNAME) Gets the signal object
currently mapped to the SIGNALNAME in this TestCase OBJ.

0BJ.SIGNALNAME is an alternative syntax.
If SIGNALNAME is not an existing name an error will be thrown.
Get a signal using getSignal().

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
getSignal(testCase, 'Int1')

Get a signal using getSignal() to get all signals.

testCasel = systest.TestCase('Test Case 1');
testCasel1.In1 = systest.signals.Signal('Step');

testCase2 = systest.TestCase('Test Case 2');
testCase2.In1 = systest.signals.Signal('Ramp');

testCases = [testCasel testCase2];
getSignal(testCases, 'Int1')

Get a signal by referencing its name space using ’.” syntax.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
testCase.Int

+ “Working with Test Cases and Signals Programmatically” on page
5-57

13-5

horzcat

13-6

Purpose
Syntax

Description

Examples

How To

Horizontally concatenate one to many TestCase Objects

TESTCASES

horzcat (VARARGIN)

TESTCASES = horzcat (VARARGIN) horizontally concatenates one to
many scalar or arrays of systest.TestCase objects for the overloaded
function systest.TesCase/horzcat .

All TestCase objects must have unique names.

When creating an array of TestCases, the SignalNames property will
be updated to ensure all TestCases have the same SignalNames. If a
TestCase does not have a SignalName that another TestCase does, then
it will be updated to map to the same Signal as the other TestCase.

Create a 1 x 3 list of TestCase objects.

tc1 = systest.TestCase('Test Case 1', 'In1');
tc2 = systest.TestCase('Test Case 2', 'In2');
tc3 systest.TestCase('Test Case 3', 'In3');

testCases = [tc1 tc2 tc3]

testCases(2)

“Working with Test Cases and Signals Programmatically” on page
5-57

isSignal

Purpose
Syntax

Description

Examples

How To

Check if signal name is mapped

RESULT

isSignal(0BJ, SIGNALNAME)

RESULT isSignal(0BJ, SIGNALNAME) returns true if SIGNALNAME
is an existing mapping in the given TestCase OBdJ.

Create a test case; create two signals within the test case — In1, which
is a step, and In2, which is a ramp. Verify that In1 is mapped.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
testCase.In2 = systest.signals.Signal('Ramp');

result = isSignal(testCase, 'In1')

“Working with Test Cases and Signals Programmatically” on page
5-57

13-7

removeSignal

13-8

Purpose
Syntax

Description

Examples

How To

Remove mapped signal
OBJ = removeSignal(0OBJ, SIGNALNAME)

OBJ = removeSignal (0BJ, SIGNALNAME) removes the SIGNALNAME
from the mappings in OBJ and returns the updated TestCase OBJ. OBJ
may be a scalar TestCase object or an array.

If SIGNALNAME is not an existing name an error will be thrown.
Create a test case; create signals In1 and In2; remove signal In1.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');
testCase.In2 = systest.signals.Signal('Ramp');

testCase = removeSignal(testCase, 'Ini');

+ “Working with Test Cases and Signals Programmatically” on page
5-57

renameSignal

Purpose
Syntax

Description

Examples

How To

Rename mapped signal to new name

OBJ = renameSignall(0BJ, oldSignalName, newSignalName)

0OBJ renameSignall(0OBJ, oldSignalName, newSignalName)
changes the mapping of OLDSIGNALNAME to NEWSIGNALNAME
and returns the updated TestCase OBdJ.

Create a test case; create signal In1; rename signal In1 to signal In2.

testCase = systest.TestCase('Test Case 1');
testCase.In1 = systest.signals.Signal('Step');

testCase = renameSignal(testCase, 'In1', 'In2')

+ “Working with Test Cases and Signals Programmatically” on page
5-57

13-9

setDataType

Purpose
Syntax

Description

Examples

How To

13-10

Update data type for signal
OBJ = setDataType(0OBJ, SIGNALNAME, NEWDATATYPE)

OBJ = setDataType(0BJ, SIGNALNAME, NEWDATATYPE) sets the data
type of SIGNALNAME in all TestCase OBds to NEWDATATYPE.

Change In1 to be single data type.

testCase = systest.TestCase('Test Case 1', 'Int1');
testCase setDataType(testCase, 'In1', 'single');

+ “Working with Test Cases and Signals Programmatically” on page
5-57

setSignal

Purpose

Syntax

Description

Examples

How To

Assign signal to signal name

OBJ = setSignal (0BJ, SIGNALNAME, SIGNALOBJ)
OBJ.SIGNALNAME = SIGNALOBJ

OBJ = setSignal(0BJ, SIGNALNAME, SIGNALOBJ) maps the
SIGNALOBJ to SIGNALNAME and returns the object TestCase OBJ.

OBJ.SIGNALNAME = SIGNALOBJ is an alternative syntax.

Assign a signal using setSignal().

testCase = systest.TestCase('Test Case 1')
signal = systest.signals.Signal('Constant')
testCase = setSignal(testCase, 'Ini1', signal)

Assign a signal using "dot" field assignment.

testCase = systest.TestCase('Test Case 1')
signal = systest.signals.Signal('Constant’)
testCase.In1 = signal

+ “Working with Test Cases and Signals Programmatically” on page
5-57

13-11

stLoadTestCases

Purpose
Syntax

Description

Examples

How To

13-12

Load systest.TestCase objects from SystemTest TEST-file

testcases = stLoadTestCases(testFile)

testcases = stLoadTestCases(testFile) returns the
systest.TestCase object saved in testfile. It returns the list of test
cases in the test file.testfile must be a SystemTest TEST-file (.test)
available on the MATLAB path or specified with a full path.

The function will return empty if the test does not contain a Test Case
Data test vector containing at least one test case. The function will
error if called when the testfile is open in the SystemTest desktop.

Name your test file and model; create a test to that name using that
model; load the test cases.

testFile = 'f14.test';
modelName = 'f14';

systest.createHarness(testFile, modelName);
testCases = stLoadTestCases(testFile)

“Working with Test Cases and Signals Programmatically” on page
5-57

strun

Purpose
Syntax

Description

Run series of SystemTest test files
strun(testfile)

strun(testfile) runs the SystemTest test file specified by the string
testfile. You can specify testfile as the name of a test file, or as the full
path to a test file. If a test file name is specified without a full path, the
test file must reside on the MATLAB path.

testfile may also be specified as a 1-by-N or N-by-1 cell array of test
files, each of which is run serially.

Running tests that you set up in the SystemTest software from the
MATLAB command line using strun is useful for running multiple test
files as a batch or calling a test file as part of a MATLAB file.

Note If the SystemTest desktop is open when strun is called, strun
leaves it open. Otherwise, strun closes the desktop after the test runs.

strun will run in a synchronous manner, that is, the MATLAB
command line will be blocked until strun finishes executing. strun will
finish executing when either of the following conditions is met:

e All test files have finished executing.

e A Ctrl+C is issued.

When a test is run, it is executed using the settings specified in the test
file. The only exception is the option to launch the Test Results Viewer.
If this option is enabled, it will be ignored.

If only one test file is specified, and the test encounters an execution
error, strun will error. If multiple test files have been specified, a
warning will be issued for any test execution errors, and the remaining
test files will be run.

13-13

strun

Examples

How To

13-14

Note that it is recommend that you run the test from the SystemTest
desktop to verify that elements are not in an error state, and the test
will run successfully, before running it via the MATLAB command line
using this function.

Note that MATLAB will remain busy while tests are executing via the
strun command. Control is returned to the MATLAB command line
once all tests execute.

Run a test called mytest that is on the MATLAB path.

strun('mytest"')

Run a test called mytest that is not on the MATLAB path, but is in
a local directory called c:\work.

strun('c:\work\mytest.test')

Run two tests, called mytest and mytest2, that are both on the
MATLAB path.

strun({'mytest' 'mytest2'})

Run three tests, two of which are on the MATLAB path, and one of
which is not.

strun({'mytest' 'c:\work\mytest2.test' 'mytest3'})

+ “Running Tests from the MATLAB Command Line” on page 1-11

stSaveTestCases

Purpose
Syntax

Description

Examples

How To

Save systest.TestCase objects from SystemTest TEST-file

testcases = stSaveTestCases(testFile, testCases)

testcases = stSaveTestCases(testFile, testCases) saves
testcases to testfile. testfile must be a SystemTest TEST-file
(.test) available on the MATLAB path or specified with a full path.
testcases must be a 1xN systest.TestCase object.

If there is already a Test Case Data test vector present in testfile,
the test vector will have its test cases overridden by testcases and
testfile will be updated. If there is no Test Case Data test vector in
testfile, then one with the name 'TestCases’ will be created.

This will error if called when the testfile is open in the SystemTest
desktop.

Name your test file and model; create a test to that name using that
model; edit the test cases; save the test cases back to the test.

testFile = 'f14.test';
modelName = 'f14';

systest.createHarness(testFile, modelName);

testCases = systest.TestCase('My Test Case',
stSaveTestCases(testFile, testCases);

u');

“Working with Test Cases and Signals Programmatically” on page
5-57

13-15

stviewer

Purpose
Syntax

Description

How To

13-16

Open Test Results Viewer
stviewer (filename)

stviewer (filename) opens the Test Results Viewer using the test
results saved in the MAT-file specified by the string filename.
filename must specify a MAT-file created by a SystemTest test.

This function opens the Test Results Viewer directly from MATLAB.

Note The Test Results Viewer is being deprecated. In R2010b,

the Test Results Viewer is no longer available from the SystemTest
desktop. It can still be opened via the stviewer function. Please see
“Deprecation of Test Results Viewer” in the SystemTest Release Notes
for more information.

For more information about the Test Results Viewer, see Chapter 11,
“Using the Test Results Viewer”.

* Chapter 11, “Using the Test Results Viewer”

systemtest

Purpose

Syntax

Description

Examples

Open SystemTest desktop

systemtest
systemtest(testfile)

systemtest opens the SystemTest desktop with a new untitled test.

systemtest(testfile) opens testfile in the SystemTest desktop, where
testfile is a SystemTest test file (. test) available on the MATLAB path
or specified with a full path.

Open a test called mytest that is on the MATLAB path.
systemtest('mytest')

Open a test called mytest that is not on the MATLAB path, but is in
a local directory called c:\work.

systemtest('c:\work\mytest.test')

13-17

systest.createHarness

Purpose
Syntax

Description

Examples

How To

13-18

Create SystemTest test harness from model
systest.createHarness(testFileName,modelName)

systest.createHarness(testFileName,modelName) creates a
SystemTest test harness named <testFileName> for the model
<modelName>. The test is set up with a Test Case Data test vector and
a Simulink element using the information from the Simulink model.
The model must be on the MATLAB path. The testFileName must

be a writable file location.

The following example creates a test harness from a model:

>>modelName = 'C:\mymodel.mdl';
>>testFileName = 'C:\my_new_harness.test';

>>gystest.createHarness(testFileName,modelName)

+ “Generating the Test Harness at the MATLAB Command Line” on
page 6-13

systest.requirements.createlink

Purpose Create requirements link object
Syntax reqlinkobj=
systest.requirements.createlink(format, location,
linktype,linkvalue)

reglinkobj= systest.requirements.createlink(reqlinkstruct)

Description reqlinkobj=
systest.requirements.createlink(format,location,linktype,linkvalue)
) creates a requirement link object to the linkvalue in the location
for a given format.

format,location,linktype,linkvalue must be specified as a string.
format and linktype are not case sensitive, but location and
linkvalue are case sensitive.

If 1inkvalue is a 1xN cell array of strings, then 1xN array of
requirement link objects reqlinkobj will be created.

reqlinkobj= systest.requirements.createlink(reqlinkstruct))
creates a requirement link object from the requirement link MATLAB
structure returned from the Simulink Verification and Validation
toolbox. If reqlinkstruct is a 1xN struct, then a 1xN array of
requirement link objects reqlinkobj will be returned.

reglinkstruct - Requirement links are represented in MATLAB in a
structure array with the following format:

® reqlinkstruct.description — Requirement description.

® reqlinkstruct.doc — Document name.

® reqglinkstruct.id — Location within the above document.

® reqglinkstruct.keywords — User keywords.

® reqlinkstruct.linked — Indicates if the link should be reported.

® reqlinkstruct.reqgsys — Link type registration name.

13-19

systest.requirements.createlink

Examples

How To

13-20

Note createlink throws an error if DOORS is not installed or open.
createlink throws an error if reqlinkstruct is not a DOORS link.

Create a requirement link object to a DOORS object "1" in the module
"/demo/MyModule". Note: DOORS must be running.

reqLinkObj = systest.requirements.createlLink
('DOORS', '/demo/MyModule' ,'DOORS Object','1")

Create a requirement link object from a requirement link structure
attached to a Signal Builder block in a model. Note: DOORS must be

running.

blockPath ‘mymodel/SignalBuilderBlock/";
reqStruct = rmi('get',blockPath,1);
reqLinkObj = systest.requirements.createLink(reqStruct);

systest.requirements.getInfo

“Creating Requirements Programmatically” on page 5-46

systest.requirements.getinfo

Purpose

Description

Examples

How To

Information on supported requirements linking objects

formats = systest.requirements.getInfo returns a 1xN cell array
of strings describing the supported formats for which requirement links
can be created.

linktypes = systest.requirements.getInfo(format) returns
information describing the supported linktypes for a given format.
format must be specified as a string. format is not case sensitive.
linktypes is returned as a 1x1 structure containing the following fields:

® SupportedLinkType — A 1xN cell array of strings of linktypes
specific to the specified format.
® AvailableModuleLocations — A 1xN cell array of strings containing

the module locations for the specified format.

info = systest.requirements.getInfo(format,modulelocation)
returns information describing the supported link values in the
modulelocation for a given format. format and modulelocation
must be specified as a string. format is not case sensitive but
modulelocation is case sensitive. info is returned as a 1x1 structure
containing the following fields:

® ModuleID — A string containing the module ID.

® ModuleLocation — A string containing the module location for the
ModuleLocation.

® AvailableObjectIds — A 1xN cell array of strings containing the
object IDs for the specified ModuleLocation.

Find out what requirements in DOORS you can link to in your test case.

listOfLinkSuppor = systest.requirements.getInfo('DOORS"');

* systest.requirements.createlink

+ “Creating Requirements Programmatically” on page 5-46

13-21

systest.signals.segments

Purpose
Syntax

Description

13-22

Contain supported segment types for creating signals

segment = systest.signals.segments. (segment_type)

segment = systest.signals.segments. (segment_type) creates a
signal with a segment of type segment_type.

The following segment types can be used on the
systest.signals.segments function:
® Constant — A segment with a constant value.
Properties include:
Duration — The length in seconds of the segment.
Value — The constant value of the segment.
® Custom— A segment with user-specified time and data vectors.
Properties include:
Data — User-specified data vector for each time point.
Time — User-specified time vector for each point.
Duration — The length in seconds of the segment.
® Pulse — A segment with a Pulse value.
Properties include:
Duration — The length in seconds of the segment.
InitialValue — The value of the segment before the pulse.
0ffset — The length in seconds before the pulse begins.
FinalValue — The value of the segment during the pulse.
PulseWidth — The length in seconds of the pulse.
® Ramp — A segment with a linearly changing value.

Properties include:

systest.signals.segments

Duration — The length in seconds of the segment.

FinalValue — The value the segment finishes at.

InitialValue — The value the segment starts at.

Offset — The time in seconds before the ramp starts changing.
Slope — The rate of change between InitialValue and FinalValue.
Sine — A periodic sine wave.

Properties include:

Amplitude — The amplitude of the sine wave.

Duration — The length in seconds of the segment.

InitialValue — The vertical offset of the sine wave.
PeriodLength — The length of time in seconds for a full period.
PhaseShift — The amount in degrees started into the first period.
SampleRate — The amount in seconds between each sampled point.
Square — A periodic series of pulses.

Properties include:

Amplitude — The amplitude of the square wave.

Duration — The length in seconds of the segment.

DutyCycle — The percentage of time the wave has positive amplitude.
InitialValue — The vertical offset of the square wave.
PeriodLength — The length of time in seconds for a full period.
PhaseShift — The amount in degrees started into the first period.
Step — A segment that transitions from a one value to another.
Properties include:

Duration — The length in seconds of the segment.

FinalValue — The value of the segment after Offset.

13-23

systest.signals.segments

Examples

How To

13-24

InitialValue — The value the segment before Offset.

Offset — The time in seconds before the step occurs.

Create a segment of type Constant, with no properties set.

segment = systest.signals.segments.Constant

Create a segment of type Constant with a value of 5.

segment = systest.signals.segments.Constant('Value', 5)
Create a segment of type Custom with a time of 0:99 and data of
rand(1,100).

segment = systest.signals.segments.Custom('Time', 0:99, 'Data', rand(1,100))

Create a segment of type Pulse with an offset of 3 and a FinalValue
of 2.

segment = systest.signals.segments.Pulse('Offset', 3, 'FinalValue', 2)

Create a segment of type Ramp with an offset of 2 and a FinalValue
of 12.

segment = systest.signals.segments.Ramp('Offset', 2, 'FinalValue',6 12)

Create a segment of type Sine with an amplitude of 5.

segment = systest.signals.segments.Sine('Amplitude', 5)

Create a segment of type Square with an amplitude of 5.

segment = systest.signals.segments.Square('Amplitude', 5)

Create a segment of type Step with an InitialValue of 4.

segment = systest.signals.segments.Step('InitialValue', 4)

“Working with Test Cases and Signals Programmatically” on page
5-57

systest.signals.Signal

Purpose Collection of segments used to generate time-based data
Syntax systest.signals.Signal('segment_type')
Descripl‘ion systest.signals.Signal('segment_type') creates a signal with a

segment of type segment_type.

The following properties can be used on the systest.signals.Signal
function:

e DataType — The class of time-based data that will be generated.

e Duration — The ending point of the Time vector.

® ExtrapolationMode — Used to determine Data values after the
endpoint of the last Segmentl.

e Segments — An array of Segment objects inside this Signal.
e Time — The Time vector of the Signal.
¢ Data — The Data vector of the Signal.

The following static functions can be used with the
systest.signals.Signal function:

® getAvailableExtrapolationModes — Returns a list of valid values
for ExtrapolationMode property.
® getAvailableDataTypes — Returns a list of valid values for DataType
property.
Examples Create a signal with a Step segment followed by a Pulse.
systest.signals.Signal('Step', 'Pulse')

Create a signal with custom user data.

time = [0:.1:10]"';
data = rand(length(time), 1);
systest.signals.Signal('Custom', {'Time', time, 'Data', data'}))

13-25

systest.signals.Signal

How To + “Working with Test Cases and Signals Programmatically” on page
5-57

13-26

systest.TestCase

Purpose
Syntax

Description

Examples

Collection of signals for creating time-based data
testCase = systest.TestCase(test_case_name)

testCase = systest.TestCase(test_case name) is a collection of
signals in the test case test_case_name.

TestCase objects allow you to map signal names to
systest.signals.Signal objects.

Properties is a structure holding all properties of the TestCase. To
access or modify a property of a TestCase object, use the Properties

property.
testCase.Properties.Name = 'New Name;

testCase.Properties.Description = 'My Description;

The following functions can be used on the TestCase object:

® TestCase — Creates a TestCase object.

e isSignal — Checks if a signal name is mapped.

® setSignal — Maps a signal name to a signal.

® getSignal — Gets the signal mapped to a signal name.

* removeSignal — Removes a mapped signal.

* renameSignal — Renames a mapped signal to a new name.

e setDataType — Updates data type for a signal.

® horzcat — Combines TestCases into an array.

The following example creates a test case where the ramp linearly
increases.

Create a test case by specifying the name.

testCase = systest.TestCase('Test Case 1')

13-27

systest.TestCase

Map signal names directly to signal objects.

testCase.In1 = systest.signals.Signal('Constant');
testCase.In2 = systest.signals.Signal('Step');
testCase.In3 systest.signals.Signal('Ramp');

How To + “Working with Test Cases and Signals Programmatically” on page
5-57

13-28

SystemTest Hot Keys

The following keyboard shortcuts are available in the SystemTest software.

Key Description

Alt+N Activates the New button to create a new test
vector or test variable.

F1 Opens Help.

F5 Runs a test.

Ctrl+C While a test is running, stops the test.

Ctrl+C When a test is not running, copies selection in
some parts of the user interface.

Ctrl+N Adds a new untitled test.

Ctrl+O Opens a test.

Ctrl+Q Closes the SystemTest software.

Ctrl+S Saves a test.

Ctrl+V Pastes the copied selection.

Ctrl+W Closes a test.

Ctrl+X Cuts a selection in some parts of the user
interface.

Ctrl+Y Performs redo of last undo action.

Ctrl+Z Performs undo of last action.

Ctrl+0 Gives focus to the Test Browser.

Ctrl+1 Gives focus to the Properties pane.

A SystemTest™ Hot Keys

A-2

Key Description

Ctrl+2 Gives focus to the Test Vectors pane.
Ctrl+3 Gives focus to the Test Variables pane.
Ctrl+4 Gives focus to the Resources pane.
Ctrl+5 Gives focus to the Run Status pane.
Ctrl+6 Gives focus to the Desktop Help pane.
Ctrl+7 Gives focus to the Elements pane.
Ctrl+8 Gives focus to the Getting Started pane.
Ctrl+Shift+0 Gives focus to the Plots pane.
Ctrl+Shift+U Undocks the currently selected pane.
Ctrl+Shift+D Docks the currently selected pane.

The dataset Array

¢ “Dataset Arrays” on page B-2
® “Dataset Array Operations” on page B-5

B The dataset Array

Dataset Arrays

B-2

In this section...

“Overview” on page B-2
“Test Results Data” on page B-3
“Looking at Data” on page B-3

Overview

When you run a test, you can view your test results data as a dataset array in
MATLAB. This appendix contains general information on the dataset array
that is the format used for test results that can be accessed in MATLAB. See
Chapter 12, “Accessing Test Results from the MATLAB Command Line” for
information on using the command-line test results.

Dataset arrays are used to collect heterogeneous data and metadata including
into a single container variable. Dataset arrays can be viewed as tables

of values, with rows representing different observations and columns
representing different measured variables. Dataset arrays can accommodate
variables of different types, sizes, units, etc.

Note In the SystemTest software, each observation (i.e., row) is used to
represent a test iteration, while each measured variable (i.e., column)
represents a test vector or test result value.

Dataset arrays combine the organizational advantages of basic MATLAB data
types while addressing their shortcomings with respect to storing complex
heterogeneous data.

Dataset arrays have a family of functions for assembling, accessing,
manipulating, and processing the collected data. Basic array operations
parallel those for numerical, cell, and structure arrays.

Dataset Arrays

Test Results Data

MATLAB data containers (variables) are suitable for completely homogeneous
data (numeric, character, and logical arrays) and for completely heterogeneous
data (cell and structure arrays). Test results data, however, are often a
mixture of homogeneous variables of heterogeneous types and sizes. Dataset
arrays are suitable containers for this kind of data.

Dataset arrays can be viewed as tables of values, with rows representing
different test iterations or cases and columns representing different test
vector and test result values. Basic methods for creating and manipulating
dataset arrays parallel the syntax of corresponding methods for numerical
arrays. Because of the potentially heterogeneous nature of the data, dataset
arrays have indexing methods with syntax that parallels corresponding
methods for cell and structure arrays.

Looking at Data

Dataset arrays in MATLAB are variables created with the dataset function,
and then manipulated with associated functions. In the case of the
SystemTest software, when a test is run, a dataset array is created and stored
as part of a test results object. The test results object is assigned to a variable
named stresults in the MATLAB workspace when the test stops running.
See Chapter 12, “Accessing Test Results from the MATLAB Command Line”
for information on using stresults.

The following table lists the accessible properties of dataset arrays. Properties
can be configured using the set function, or accessed using the get function.

Dataset Value

Property

Description | A string describing the data set. The default is an empty
string.

Units A cell array of strings giving the units of the variables

in the data set. The number of strings must equal the
number of variables. Strings may be empty. The default is
an empty cell array.

B-3

B The dataset Array

Dataset Value
Property
DimNames A cell array of two strings giving the names of the rows

and columns, respectively, of the data set. The default is
{'Observations' 'Variables'}.

UserData Any variable containing additional information to be
associated with the data set. The default is an empty array.

ObsNames A cell array of nonempty, distinct strings giving the names
of the observations in the data set. The number of strings
must equal the number of observations. The default is an
empty cell array.

VarNames A cell array of nonempty, distinct strings giving the names
of the variables in the data set. The number of strings
must equal the number of variables. The default is the
cell array of string names for the variables used to create
the data set.

Functions associated with dataset arrays are used to display, summarize,
convert, concatenate, and access the collected data. Examples include disp,
summary, double, horzcat, and get, respectively. Many of these functions
are invoked using operations analogous to those for numerical arrays, and
do not need to be called directly. (For example, horzcat is invoked by [].)
Other functions access the collected data and must be called directly (for
example, replacedata).

Dataset arrays are implemented as MATLAB objects; the associated functions
are their methods. It isn’t necessary to understand objects and methods to
make use of dataset arrays—in fact, dataset arrays are designed to behave as
much as possible like other, familiar MATLAB arrays.

B-4

Dataset Array Operations

Dataset Array Operations

This table lists available methods for dataset arrays. Many of the methods are
invoked by familiar MATLAB operators and do not need to be called directly.
For full descriptions of individual methods, type

help dataset/methodname

Dataset
Method

Description

cat

Concatenate dataset arrays. The horzcat and vertcat
methods implement special cases.

dataset

Create dataset array.

datasetfun

Apply function to each variable of dataset array.

disp

Display dataset array, without printing data set name.

display

Display dataset array, printing data set name. This
method is invoked when the name of a dataset array is
entered at the command prompt.

double

Convert dataset variables to double array.

end

Last index in indexing expression for dataset array.

get

Get dataset array property.

horzcat

Horizontal concatenation for dataset arrays (add
variables). This method is invoked by square brackets.

isempty

True for empty dataset array.

join

Merge observations from two dataset arrays.

length

Length of dataset array.

ndims

Number of dimensions of dataset array.

numel

Number of elements in dataset array.

replacedata

Convert array to dataset variables.

set

Set dataset array property value.

single

Convert dataset variables to single array.

size

Size of dataset array.

B The dataset Array

B-6

Dataset Description

Method

sortrows Sort rows of dataset array.

subsasgn Subscripted assignment for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing.

subsref Subscripted reference for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing.

summary Print summary statistics for dataset array.

unique Unique observations in dataset.

vertcat Vertical concatenation for dataset arrays (add

observations). This method is invoked by square brackets.

A

accessing test results in MATLAB 12-5
accessing test results summary in MATLAB 12-2
adaptors
specifying in Video Input element 9-5
addartifact function 13-2
adding
elements 1-21
Simulink element 4-6
Simulink model 4-7
adding buses 5-29
adding requirements to test cases 5-38
automatically generating a test 6-2
automatically generating a test from
MATLAB 6-13
automatically generating a test from
Simulink 6-4

block parameter override 4-7
browsing
test results 11-8
buses
adding in Test Case Editor 5-29
in Test Case Editor 5-23
buses in Test Case Editor 5-23

C

Command Line Interface
creating signals 5-60
editing test cases 5-59
importing data 5-61
load and save test cases 5-58
Test Case Editor 5-57
command line test running 1-11 13-13
confirmation dialog boxes
turning off 1-8
constraints

counter 11-32
creating 11-33
default 11-29
defined 11-29
limit check 11-33
time series data 11-41
context menus 1-5
converting deprecated elements 3-29
converting Scalar Plot elements 3-31
converting Vector Plot elements 3-32
counter 11-32
create signals via command line 5-60
creating
constraints 11-33
test variables 1-19
test vectors 1-16
creating signals 5-18
creating test cases 5-13
creating test vectors with probability
distributions 2-20 2-36

D

data
browsing 11-8
Data Acquisition Toolbox elements 8-1
example 8-3
dataset array 12-2 12-5
Define Plot pane 11-21
defining
iterations 1-16
demos
Getting Started 1-12
Inverted Pendulum 4-3 11-38
Signal Builder 4-38
Simple 1-12
Throttle 11-3
deprecated elements 3-29
DerivedResultNames property 12-4
desktop 1-3

Index-1

Index

Distributed tab 10-2
distributed testing

distributing iterations 10-12
enabling 10-3

example 10-17

file dependencies 10-7

path dependencies 10-9
running distributed test 10-14
schedulers 10-5

tasks 10-12

user configurations 10-5

distributing iterations across tasks 10-12
distributing SystemTest tests 10-2

edit test cases via command line 5-59

editing test vectors from within an element 2-79

elements 3-5

Index-2

adding 1-21

Analog Input 8-9

Analog Output 8-4

converting deprecated 3-29
converting Scalar Plot to General Plot 3-31
converting Vector Plot to General Plot 3-32
Data Acquisition Toolbox 8-1
deprecated 3-29

Digital Output 8-7 8-11

General Plot 3-15

IF 3-14

Image Acquisition Toolbox 9-1
incorrectly configured example 1-26
Instrument Control Toolbox 7-1
invalid characters in names 3-6
Limit Check 3-7 3-11

MATLAB 3-6

Query Instrument 7-11

Scalar Plot 3-23

Simulink 4-1

Stop 3-26

Subsection 3-27
To Instrument 7-5
Vector Plot 3-20
Video Input 9-3
enabling distributed testing 10-3
examples
adding elements 1-21
building a test 1-12
creating a test vector 1-16
creating constraints 11-33
creating test vector with probability
distributions 2-36
creating time series plot 11-38
Data Acquisition Toolbox elements 8-2
defining test variables 1-19
distributing a test 10-17
General Plot element 1-28
generating plots 11-9
Image Acquisition Toolbox element 9-3
Instrument Control Toolbox elements 7-2
Limit Check element 1-25
mapping Simulink model outputs to test
variables 4-13
MATLAB element 1-23
overriding Inport block signals 4-28
overriding Simulink inport signals 4-12
overriding Simulink model inputs 4-7
Simulink element 4-6
using Simulink model coverage 4-38
viewing individual plot iterations 11-17
viewing test results 1-43
Excel files
reading into SystemTest 2-46
executing a distributed test 10-14
exponential distribution 2-30
exprnd 2-31

F

file dependencies for distributed testing 10-7

Index

functions
addartifact 13-2
getcurrent 13-3
getInfo 13-4
getSignal 13-5
horzcat 13-6
isSignal 13-7
removeSignal 13-8
renameSignal 13-9
setDataType 13-10
setSignal 13-11
stLoadTestCases 13-12
strun 13-13
stSaveTestCases 13-15
stviewer 13-16
systemtest 13-17
systest.createHarness 13-18
systest.requirements.createlink 13-19
systest.requirements.getInfo 13-21
systest.signals.segments 13-22
systest.signals.Signal 13-25
systest.testCase 13-27

G

gamma distribution 2-32
gamrnd 2-32
General Plot element 3-15
using signals from Test Case Editor 5-51
generated files 1-40
generating
plots 11-9
generating a test automatically 6-2
generating a test automatically from
MATLAB 6-13
generating a test automatically from
Simulink 6-4
getcurrent function 13-3
getInfo function 13-4

getSignal function 13-5
Getting Started demo 1-12
grouped test vectors 2-5
Grouping property 12-4

H

horzcat function 13-6
hot keys 1-6 A-1
HTML log

sample output 1-41

IF element 3-14
Image Acquisition Toolbox element
acquiring video data 9-1
example 9-3
image data
importing into a test 9-1
image plot 11-16
importing data via command line 5-61
Inport Block Mappings Assistant 4-27
Inport blocks 4-36
example of overriding 4-28
overriding 4-23
inport signal override 4-11
Instrument Control Toolbox elements 7-1
example 7-4
integration with Parallel Computing
Toolbox 10-2
invalid characters in element names 3-6
Inverted Pendulum demo 4-3 11-38
isSignal function 13-7
iteration
current 11-36
iterations
defining 1-16
specifying number of frames acquired 9-6

Index-3

Index

K
keyboard shortcuts A-1

L

limit check
constraint 11-33
pass/fail 1-31
Limit Check element
example 1-25
General Check 3-7
Tolerance Check 3-11
line plot 11-15
linking requirements to test cases 5-38
linking requirements to test cases
programmatically 5-46
load and save test cases via command line 5-58
log file
test report 1-35
logged signal override 4-14
lognormal distribution 2-33
lognrnd 2-33

M

Main Test 1-14 3-3
mapping logged signals to Inport blocks 4-36
Mappings Assistant
Inport Block 4-27
Model Output 4-20
markers 11-24
MAT-file 1-32
MAT-File test vector 2-14
MATLAB command line 1-11 13-13
MATLAB element 3-6
accessing signals from the Test Case
Editor 2-78
example 1-23
example code to access signals from the Test
Case Editor 2-78

Index-4

MATLAB expression
test vector 1-16
MATLAB Expression test vector 2-2
menus
context menus 1-5
model
adding 4-7
input overrides 4-7
model coverage 4-38
Model Output Mappings Assistant 4-20
most recently used test list 1-8

normal (Gaussian) distribution 2-28
NumberOfIterations property 12-3

o

outport signal override 4-16
overriding
block parameter 4-7
inport signal 4-11
logged signal 4-14
model input 4-7
model outputs 4-13
outport signal 4-16
To Workspace block 4-18
workspace variable 4-9
overriding inport block signals 4-22
overriding Inport block signals 4-23
example 4-28
overriding Inports with signals from Test Case
Editor in Simulink element 4-48

P

Parallel Computing Toolbox 10-2

pass/fail 1-31

path dependencies for distributed testing 10-9
plots

Index

constraint 11-29
exploring 11-16
generating 11-9
highlighting data 11-21
image plot 11-16
line plot 11-15
markers 11-24
overlapping lines 11-25
plotting tools 11-17
scatter plot 11-15
single iterations 11-36
subplot 11-26
surf plot 11-15
time series 11-38
time series plot 11-15
types 11-15
waterfall plot 11-16
plotting grouped test vectors 11-12
plotting signals 5-51
plotting test results 12-10
plotting tools 11-17
Post Test 1-15 3-3
Pre Test 1-14 3-2
preferences
confirmation dialog boxes 1-8
Preferences dialog box 1-7
probability distributions 2-20 2-28
exponential 2-30
gamma 2-32
lognormal 2-33
normal (Gaussian) 2-28
T 2-34
uniform 2-29
Weibull 2-35
product elements 1-22
programmatic requirements linking in test
cases 5-46
properties
DerivedResultNames 12-4
Grouping 12-4

NumberOfIterations 12-3
ResultsDataSet 12-3
SaveResultNames 12-3
StartTime 12-4
StopTime 12-4

Tag 12-4

TestFile 12-4
TestVectorNames 12-3
UserData 12-4

R
rand 2-30
randn 2-29

randomized test vectors 2-20
reading Excel files into SystemTest 2-46
refining test results 12-8
removeSignal function 13-8
renameSignal function 13-9
requirements linking in test cases 5-38
Requirements Tab in Test Case Editor 5-41
reserved keywords in Test Results Viewer 11-8
results
distinguish 11-21
ResultsDataSet property 12-3
right-click menus 1-5
Run Status 1-38
Run Status pane 1-35
running
distributed test 10-14
test 1-38
running tests from MATLAB command line 1-11
13-13

S

SaveResultNames property 12-3
saving

test 1-37

test results files 11-43

Index-5

Index

Scalar Plot element 3-23
converting to General Plot 3-31
scatter plot 11-15
sections 1-14
setDataType function 13-10
setSignal function 13-11
shortcut keys 1-6
shortcut menus 1-5
Signal Builder Block test vector 2-69 4-47
Signal Builder Blocks 2-69 4-47
Signal Builder demo 4-38
signal concatenation 5-23
signal types 5-30
signals
constant 5-30
custom 5-37
pulse 5-34
ramp 5-33
sine 5-36
square 5-35
step 5-32
Simple demo 1-12
Simulink Design Verifier 2-55 4-46
Simulink Design Verifier Data File test
vector 2-55 4-46
Simulink element
adding 4-6
block parameter 4-7
description 4-1
inport signal 4-11
logged signal 4-14

mapping logged signals to Inport blocks 4-36

model coverage 4-38

model input overrides 4-7

model output overrides 4-13

model overrides 4-7

outport signal 4-16

To Workspace block 4-18

workspace variable 4-9
Simulink Element

Index-6

overriding Inports with signals from Test
Case Editor 4-48

Simulink model coverage 4-38
Spreadsheet Data test vector 2-46
starting

SystemTest 1-14
StartTime property 12-4
stLoadTestCases function 13-12
Stop element 3-26
stopping

test 1-38
StopTime property 12-4
stresults command 12-2
strun function 1-11 13-13
stSaveTestCases function 13-15
stviewer function 13-16
subplot rows 11-26
Subsection element 3-27
summary statistics 11-8
surf plot 11-15
SystemTest

benefits 1-2

desktop 1-3

Preferences 1-7

runtime actions 1-38

starting 1-14
systemtest function 13-17
SystemTest hot keys A-1
systest.createHarness function 13-18
systest.requirements.createlink

function 13-19
systest.requirements.getInfo function 13-21
systest.signals.segments function 13-22
systest.signals.Signal function 13-25
systest.testCase function 13-27

T

T distribution 2-34
Tag property 12-4

Index

tasks in distributed testing 10-12
Telelogic® DOORS® 5-38 5-41 5-46
test
analyzing results 1-41
automatically generating 6-2
automatically generating from
MATLAB 6-13
automatically generating from Simulink 6-4
components 1-13
constraints 11-29
construction workflow 1-13
elements 1-21
FOR loop 1-16
HTML output 1-35
pass/fail 1-31
planning 1-12
plots 11-15
running 1-38
save results 1-32
saving 1-37
Simulink model 4-1
stopping 1-38
test vectors 1-16
variables 1-19
viewing results 1-43
Test Browser
overview 1-4
test case 5-13
Test Case Data Test Vector 2-75 5-6
Test Case Editor 5-2
accessing signals in MATLAB elements 2-78
5-51
adding buses 5-29
authoring signals 5-4
buses 5-23
creating signals 5-18
creating test cases 5-13
Definitions 5-2
Edit View 5-9
Introduction 5-2

linking requirements 5-38
navigating 5-9
overriding Inports with signals in Simulink
element 4-48
Requirements Tab 5-41
signal concatenation 5-23
signal types 5-30
Test Case Data Test Vector 2-75 5-6
test case options 5-17
Test Case Report 5-44
Test Case View 5-9
using 5-4
using signals in General Plot elements 5-51
using signals in Simulink elements 5-50
using signals in test elements 5-50
working in 5-9
Test Case Editor Command Line Interface 5-57
to 5-61
test case options 5-17
Test Case Report 5-44
Test Properties
Distributed 10-2
test report 1-35
activating 1-35
iteration results 1-43
sample output 1-41
test results
accessing results data 12-5
accessing summary 12-2
browsing 11-8
indexing values 12-8
plot 11-9
plotting results 12-10
refining dataset 12-8
using 12-8
test results dataset array 12-5
test results summary 12-2
Test Results Viewer 11-1
constraints 11-29
overlapping plot lines 11-25

Index-7

Index

overview 11-6
plot procedure 11-9
plot types 11-15
plotting grouped test vectors 11-12
reserved keywords 11-8
Test Results Viewer files
saving and reloading 11-43
test run options 1-8
test sections 3-2
Main Test 3-3
Post Test 3-3
Pre Test 3-2
test variables
creating 1-19
specifying in Video Input element 9-6
test vector
constraint 11-29
creating 1-16
workspace variable override 4-9
test vectors
creating 2-2 2-14
editing within element 2-79
grouped 2-5
MAT-File 2-14
MATLAB Expression 2-2
plotting grouped vectors in Test Results
Viewer 11-12
randomized 2-20
Signal Builder Block 2-69 4-47
Simulink Design Verifier Data File 2-55 4-46
Spreadsheet Data 2-46
Test Case Data 2-75 5-6
ungrouped 2-2 2-5
with probability distributions 2-20
TestFile property 12-4
tests
running in SystemTest 9-9
specifying image acquisition device 9-5
TestVectorNames property 12-3
Throttle demo 11-3

Index-8

time series

data 11-38

plot 11-15
To Workspace block override 4-18
trnd 2-34

V)

undo actions 1-6

ungrouped test vectors 2-5

uniform distribution 2-29

user configurations in distributed testing 10-5
UserData property 12-4

using dataset array 12-5

using probability distributions 2-36

using stresults command 12-2

v

Vector Plot element 3-20
converting to General Plot 3-32
vectors
grouped 2-5
ungrouped 2-5
video
importing into a test 9-1
Video Input element
running a test 9-9
specifying image acquisition device
properties 9-5
specifying number of frames per iteration 9-6
specifying test variable 9-6
using 9-1
viewing
test results 1-43
viewing test results 12-2

w

waterfall plot 11-16
wblrnd 2-35

Index

Weibull distribution 2-35 in SystemTest 1-12
workflow 1-13 workspace variable override 4-9

Index-9

	toc
	Getting Started
	Product Overview
	Quick Tour of the SystemTest Software
	Getting Familiar with the Desktop
	General Desktop Features
	Context Menus
	Hot Keys
	Undo/Redo Support

	Setting SystemTest Preferences
	Most Recently Used Test List
	Test Run Options
	Confirmation Dialog Boxes

	Viewing Test Results

	Running Tests from the MATLAB Command Line
	Example: Building a Test
	Overview
	Planning Your Test
	Building Your Test
	Starting the SystemTest Software
	Structuring Your Test
	How Test Vectors and Test Variables Relate to the MATLAB Workspa
	Creating a Test Vector
	Defining Test Variables
	Adding Elements
	Defining Pass/Fail Criteria
	Saving Test Results
	Generating a Test Report
	Saving Your Test

	Running Your Test
	Tracking Output

	Analyzing Your Test Results
	Viewing the Test Report
	Viewing Test Results

	Working with Test Vectors
	Creating MATLAB Expression Test Vectors
	Creating Grouped Test Vectors
	About Test Vectors and the MATLAB Workspace
	Creating MAT-File Test Vectors
	Creating Randomized Test Vectors with Probability Distributions
	Using Probability Distributions in Test Vectors
	Creating a Test Vector with Probability Distributions
	Viewing Data While Configuring the Test Vector
	The Probability Distributions
	Normal (Gaussian)
	Uniform
	Exponential
	Gamma
	Lognormal
	T
	Weibull

	Example: Creating Test Vectors with Probability Distributions

	Creating Spreadsheet Data Test Vectors
	Introduction
	Creating a Spreadsheet Data Test Vector
	Configuring the Spreadsheet Data Test Vector
	Replacing Strings

	Creating Simulink Design Verifier Data File Test Vectors
	Prerequisites
	Automatically Creating a SystemTest Test Harness from Simulink D
	Creating a Simulink Design Verifier Data File Test Vector
	Important Usage Notes

	Creating Signal Builder Block Test Vectors
	Creating a Test Case Data Test Vector
	Using a MATLAB Element to Access Test Case Data Test Vector Info
	Editing a Test Vector from within an Element

	Working with the Basic Elements
	Working with the Sections of a Test
	Overview
	Pre Test
	Main Test
	Post Test

	Basic Elements
	Introduction
	Invalid Characters in Element Names

	MATLAB Element
	Allowed Test Sections
	Properties Pane

	Limit Check Element — General Check
	Allowed Test Sections
	How to Use
	Properties Pane — General Check

	Limit Check Element — Tolerance Check
	Allowed Test Sections
	How to Use
	Properties Pane — Tolerance Check

	IF Element
	Allowed Test Sections
	Properties Pane

	General Plot Element
	Allowed Test Sections
	General Tab
	Plotting Simulink Data
	Options Tab

	Vector Plot Element
	Allowed Test Sections
	Plot Type
	Properties Pane

	Scalar Plot Element
	Allowed Test Sections
	Plot Type
	Properties Pane

	Stop Element
	Allowed Test Sections
	Properties Pane

	Subsection Element
	Allowed Test Sections
	Properties Pane

	Deprecated Elements
	Converting Elements
	Scalar Plot Conversion Details
	Vector Plot Conversion Details

	Using the Simulink Element
	Before You Begin
	Mapping Test Vectors and Test Variables to a Simulink Model
	Introduction
	Adding a Simulink Element
	Specifying the Simulink Model
	Overriding Simulink Model Inputs
	Overriding Simulink Block Parameters
	Overriding to Workspace Variables
	Overriding Simulink Model Inport Signals

	Mapping Simulink Model Outputs to Test Variables
	Mapping Simulink Logged Signals to Test Variables
	Mapping Simulink Outport Signals to Test Variables
	Mapping Simulink To Workspace Blocks to Test Variables

	Using the Model Output Mappings Assistant
	Editing a Test Vector or Test Variable from within the Element

	Overriding Inport Block Signals
	Introduction
	Overriding Inport Block Signals in a Simulink Element
	Using the Inport Block Mappings Assistant
	Example: Overriding Simulink Inport Blocks Using a Spreadsheet D
	Mapping Logged Signals from a Model to Inport Blocks
	Editing a Test Vector or Test Variable from within the Element

	Using Simulink Model Coverage
	Using Simulink Design Verifier Data Files in a Test
	Using Signal Builder Block Test Cases in a Test
	Using Test Cases and Signals from the Test Case Editor in a Simu

	Authoring Signals in the Test Case Editor
	Introduction to the Test Case Editor
	Definitions

	Workflow of Authoring and Using Signals
	Creating a Test Case Data Test Vector
	Working in the Test Case Editor
	Navigating in the Edit View and Test Case View
	Edit View
	Test Case View

	Creating Test Cases
	Test Case Options

	Adding Signals to Test Cases
	Signal Concatenation

	Working with Buses
	Adding Buses to a Test Case

	The Signal Types

	Linking to Requirements in Telelogic DOORS
	Introduction and Setup
	Adding Requirements
	Requirements Tab
	Test Case Report
	Creating Requirements Programmatically
	Examples

	Using Test Cases and Signals in SystemTest Test Elements
	Introduction
	Simulink Element
	MATLAB Element
	General Plot Element

	Working with Test Cases and Signals Programmatically
	Test Case Editor API
	Loading and Saving Test Cases
	Editing Test Cases
	Creating Signals
	Importing Data from an External Source into a Test Case

	Generating a SystemTest Test Harness from a Simulink Model
	Introduction
	Prerequisites
	Generating the Test Harness from Simulink
	Generating the Test Harness at the MATLAB Command Line

	Using the Instrument Control Toolbox Elements
	Introduction
	Instrument Control Toolbox Elements
	Accessing Resources

	Example: Measuring a Generator’s Frequency
	Introduction
	Setting Up the Signal Generator
	Setting Up the Oscilloscope
	Taking the Measurement
	Saving Test Results
	Running the Test and Viewing Test Results

	Using the Data Acquisition Toolbox Elements
	Introduction
	Overview
	Data Acquisition Toolbox Test Elements

	Example: Testing a Voltage Regulator
	Introduction
	Sending Analog Stimulus Data to the DUT
	Enabling the DUT with Digital Data
	Receiving Analog Response Data from the DUT
	Disabling the DUT with Digital Data
	Performing Data Analysis
	Defining Post Test Elements
	Saving and Viewing Test Results

	Using the Image Acquisition Toolbox Element
	Introduction
	Example: Acquiring Video Data in a Test
	Adding the Video Input Element to a Test
	Saving and Viewing Test Results
	Running the Test

	Distributing Tests Using Parallel Computing Toolbox Integration
	SystemTest Software and Parallel Computing Toolbox Integration
	Enabling Distributed Testing
	Selecting a User Configuration
	Setting Up File Dependencies
	Setting Up Path Dependencies
	Distributing Iterations Across Tasks
	Running a Distributed Test
	Example: Distributing a Test

	Using the Test Results Viewer
	Viewing Test Results
	Before You Begin
	A Quick Tour of the Test Results Viewer
	Viewing Your Test Results
	Reserved Keywords
	Browsing Results
	Generating Plots
	Plotting Grouped Test Vectors
	Choosing a Plot

	Exploring Plots
	Plotting Tools
	Viewing Individual Iteration Values
	Highlighting Values in Your Plot
	Exposing Overlapping Plot Lines

	Refining Your Test Results
	Creating and Applying Constraints
	Using Default Constraints
	Creating a Constraint

	Plotting Single Iterations

	Viewing Simulink Time Series Data
	Overview
	Creating a Time Series Plot

	Saving and Reloading Test Results
	Saving Test Results
	Loading Test Results

	Accessing Test Results from the MATLAB Command Line
	Viewing Test Results at the Command Line
	Introduction
	Accessing the Results Summary
	Accessing Properties of the Test Results Object

	Accessing the dataset Array

	Working with Test Results
	Introduction
	Managing Test Results Data in its Native Format
	Managing Test Results as a Dataset Array
	Plotting Results Data

	Accessing Test Results While a Test Is Running

	Function Reference
	SystemTest Hot Keys
	The dataset Array
	Dataset Arrays
	Overview
	Test Results Data
	Looking at Data

	Dataset Array Operations

	Index

